Автоматизация системы теплоснабжения (индивидуальный тепловой пункт). Автоматизированная система оперативно-дистанционного управления процессом теплоснабжения Система управления тепловыми сетями

В рамках поставки электрощитового оборудования были поставлены силовые шкафы и шкафы управления для двух корпусов (ИТП). Для приема и распределения электроэнергии в тепловых пунктах используются вводно-распределительные устройства, состоящие из пяти панелей каждое (всего 10 панелей). В вводных панелях установлены переключающие рубильники, ограничители перенапряжения, амперметры и вольтметры. Панели АВР в ИТП1 и ИТП2 реализованы на базе блоков автоматического ввода резерва. В распределительных панелях ВРУ установлены аппараты защиты и коммутации (контакторы, устройства плавного пуска, кнопки и лампы) технологического оборудования тепловых пунктов. Все автоматические выключатели снабжены контактами состояния, сигнализирующими об аварийном отключении. Эта информация передается на контроллеры, установленные в шкафах автоматики.

Для контроля и управления оборудованием используется контроллеры ОВЕН ПЛК110. К ним подключены модули ввода/вывода ОВЕН МВ110-224.16ДН, МВ110-224.8А, МУ110-224.6У, а также сенсорные панели оператора.

Ввод теплоносителя осуществляется непосредственно в помещение ИТП. Подача воды на горячее водоснабжение, отопление и теплоснабжение воздухонагревателей систем вентиляции воздуха осуществляется с коррекцией по температуре наружного воздуха.

Отображение технологических параметров, аварий, состояние оборудования и диспетчерское управление ИТП осуществляется с АРМ диспетчеров в объединенном ЦДП здания. На сервере диспетчеризации осуществляется хранение архива технологических параметров, аварий, состояния оборудования ИТП.

Автоматизацией тепловых пунктов предусматривается:

  • поддержание температуры теплоносителя, подаваемого в системы отопления и вентиляции, в соответствии с температурным графиком;
  • поддержание температуры воды в системе ГВС на подаче потребителям;
  • программирование различных температурных режимов по часам суток, дням недели и праздничным дням;
  • контроль соблюдения значений параметров, определяемых технологическим алгоритмом, поддержка технологических и аварийных границ параметров;
  • контроль температуры теплоносителя, возвращаемого в тепловую сеть системы теплоснабжения, по заданному температурному графику;
  • измерение температуры наружного воздуха;
  • поддержание заданного перепада давления между подающим и обратным трубопроводами систем вентиляции и отопления;
  • управление циркуляционными насосами по заданному алгоритму:
    • включение/выключение;
    • управление насосным оборудованием с частотными приводами по сигналам от ПЛК, установленным в шкафах автоматики;
    • периодическое переключение основной/резервный для обеспечения одинаковой наработки;
    • автоматическое аварийное переключение на резервный насос по контролю датчика перепада давления;
    • автоматическое поддержание заданного перепада давления в системах теплопотребления.
  • управление регулирующими клапанами теплоносителя в первичных контурах потребителей;
  • управление насосами и клапанами подпитки контуров отопления вентиляции;
  • задание значений технологических и аварийных параметров через систему диспетчеризации;
  • управление дренажными насосами;
  • контроль состояния электрических вводов по фазам;
  • синхронизация времени контроллера с единым временем системы диспетчеризации (СОЕВ);
  • пуск оборудования после восстановления электропитания в соответствии с заданным алгоритмом;
  • отправка аварийных сообщений в систему диспетчеризации.

Информационный обмен между контроллерами автоматизации и верхним уровнем (АРМ со специализированным ПО диспетчеризации MasterSCADA) осуществляется по протоколу Modbus/TCP.

Система автоматического регулирования теплоснабжения состоит из следующих модулей, каждый из которых выполняет собственную задачу:

  • Основной управляющий контроллер. Главная деталь контроллера – микропроцессор с возможностью программирования. Иными словами, можно ввести данные, в соответствии с которыми будет функционировать автоматическая система. Температура может изменяться в соответствии со временем суток, например, по окончании рабочего дня приборы перейдут на минимальную мощность, а перед его началом, наоборот, выйдут на максимум, чтобы прогреть помещения до прихода смены. Контроллер может выполнять регулировку тепловых установок и в автоматическом режиме, на основе собираемых другими модулями данных;
  • Термические датчики. Датчики воспринимают температуру теплоносителя системы, а также окружающей среды, посылают соответствующие команды на контроллер. Наиболее современные модели данной автоматики посылают сигналы по беспроводным каналам связи, поэтому прокладка сложных систем проводов и кабелей не нужна, что упрощает и ускоряет монтаж;
  • Панель ручного управления. Здесь сконцентрированы основные клавиши и переключатели, позволяющие вручную управлять САРТ. Вмешательство человека необходимо при проведении тестовых запусков, подключении новых модулей, модернизации системы. Чтобы добиться максимального удобства, на панели предусматривается жидкокристаллический дисплей, позволяющий в режиме реального времени отслеживать все показатели, контролировать их соответствие нормативам, своевременно предпринимать действия, если они выходят за установленные лимиты;
  • Температурные регуляторы. Это исполнительные устройства, определяющие текущую производительность САРТ. Регуляторы могут быть механическими или электронными, но задача их одна – корректировка сечения труб в соответствии с актуальными внешними условиями и потребностями. Изменение пропускной способности каналов дает возможность уменьшить или, наоборот, увеличить объемы поступающего к радиаторам теплоносителя, за счет чего температура вырастет или уменьшится;
  • Насосное оборудование. САРТ с автоматикой предполагает, что циркуляция теплоносителя обеспечивается насосами, создающими необходимое давление, нужно для определенной скорости потока воды. Естественная схема существенно ограничивает возможности регулировки.
Вне зависимости от того, где будет эксплуатироваться автоматизированная система, в небольшом коттедже или на крупном предприятии, к ее проектированию и внедрению нужно подходить со всей ответственностью. Самостоятельно провести необходимые расчеты невозможно, все работы лучше доверять специалистам. Найти их можно в нашей организации. Многочисленные положительные отзывы клиентов, десятки реализованных проектов высокой степени сложности – наглядные свидетельства нашего профессионализма и ответственного отношения!

Компания Siemens является признанным мировым лидером в разработке систем для энергетики, в том числе для систем тепло- и водоснабжения. Именно этим занимается один из Департаментов Siemens - Building Technologies – «Автоматизация и безопасность зданий». Компания предлагает полный спектр оборудования и алгоритмов для автоматизации котельных, тепловых пунктов и насосных станций.

1. Структура системы теплоснабжения

Компания Siemens предлагает комплексное решение для создания единой системы управления городскими системами тепло- и водоснабжения. Комплексность подхода состоит в том, что заказчикам предлагается все, начиная с выполнения гидравлических расчетов систем тепло- и водоснабжения и заканчивая системами коммуникации и диспетчеризации. Реализацию такого подхода обеспечивает накопленный опыт специалистов компании, приобретенный в разных странах мира в ходе выполнения разнообразных проектов в области систем теплоснабжения крупных городов Центральной и Восточной Европы. В настоящей статье рассмотрены структуры систем теплоснабжения, принципы и алгоритмы управления, которые были реализованы при выполнении этих проектов.

Системы теплоснабжения строятся преимущественно по 3-ступенчатой схеме, частями которой являются:

1. Источники тепла разных типов, соединенные между собой в единую закольцованную систему

2. Центральные тепловые пункты (ЦТП), присоединенные к магистральным тепловым сетям с высокой температурой теплоносителя (130...150°С). В ЦТП температура плавно снижается до максимальной температуры 110 °С, исходя из потребностей ИТП. У малых систем уровень центральных тепловых пунктов может отсутствовать.

3. Индивидуальные тепловые пункты, получающие тепловую энергию от ЦТП и обеспечивающие теплоснабжение объекта.

Принципиальной особенностью решений Siemens является то, что вся система основана на принципе 2-х трубной разводки, которая является лучшим технико-экономическим компромиссом. Такое решение позволяет снизить потери тепла и потребление электроэнергии в сравнении с широко распространенными в России 4-х трубной или 1-но трубной с открытым водоразбором системами, инвестиции в модернизацию которых без изменения их структуры не эффективны. Расходы на обслуживание таких систем постоянно увеличиваются. Между тем, именно экономический эффект является основным критерием целесообразности развития и технического совершенствования системы. Очевидно, что при сооружении новых систем следует принимать апробированные на практике оптимальные решения. Если же речь идет о капитальном ремонте системы теплоснабжения неоптимальной структуры, экономически выгодно переходить к 2-х трубной системе с индивидуальными тепловыми пунктами в каждом доме.

При обеспечении потребителей теплом и горячей водой, управляющая компания несет постоянные расходы, структура которых выглядит следующим образом:

Затраты на выработку тепла для потребления;

потери в источниках тепла вследствие несовершенства способов выработки тепла;

потери тепла в тепловых магистралях;

р асходы на электроэнергию.

Каждая из этих составляющих может быть снижена при оптимальном управлении и применении современных средств автоматизации на каждом уровне.

2. Источники тепла

Известно, что для систем теплоснабжения предпочтительными являются большие источники комбинированной выработки тепла и электроэнергии или такие источники, в которых тепло является вторичным продуктом, например, продуктом промышленных процессов. Именно на основе таких принципов возникла идея центрального теплоснабжения. В качестве резервных источников тепла используются котельные, работающие на разных видах топлива, газовые турбины и прочее. Если газовые котельные служат основным источником тепла, они должны работать с автоматической оптимизацией процесса горения. Только так можно получить экономию и снизить выбросы по сравнению с распределенной выработкой тепла в каждом доме.

3. Насосные станции

Тепло из источников тепла передается в магистральные тепловые сети. Теплоноситель перекачивается сетевыми насосами, которые работают непрерывно. Поэтому подбору и способу эксплуатации насосов должно уделяться особое внимание. Режим работы насоса зависит от режимов тепловых пунктов. Снижение расхода на ЦТП влечет за собой нежелательное увеличение напора насоса (насосов). Увеличение напора отрицательно воздействует на все компоненты системы. В лучшем случае увеличивается только гидравлический шум. В любом случае теряется электрическая энергия. В этих условиях безусловный экономический эффект обеспечивается при частотном управлении насосами. Используются различные алгоритмы управления. В базовой схеме контроллер поддерживает постоянный перепад давления на насосе путем изменения частоты вращения. В связи с тем, что с уменьшением расхода теплоносителя снижаются потери давления в трассах (квадратичная зависимость), можно снизить также заданное значение (уставку) перепада давления. Такое управление насосами называется пропорциональным и позволяет дополнительно снизить затраты на работу насоса. Более эффективно управление насосами с коррекцией задания по “удаленной точке”. В этом случае измеряется перепад давления в конечных точках магистральных сетей. Текущие значения перепада давления компенсируют давления на насосной станции.

4. Центральные тепловые пункты (ЦТП)

В современных системах теплоснабжения ЦТП играют очень важную роль. Энергосберегающая система теплоснабжения должна работать с применением индивидуальных тепловых пунктов. Однако это не значит, что ЦТП будут закрываться: они выполняют функцию гидравлического стабилизатора и одновременно разделяют систему теплоснабжения на отдельные подсистемы. Из ЦТП в случае применения ИТП исключаются системы центрального горячего водоснабжения. При этом через ЦТП проходят только 2 трубы, разделенные теплообменником, который отделяет систему магистральных трасс от системы ИТП. Таким образом, система ИТП может работать с другими температурами теплоносителя, а также с меньшими динамическими давлениями. Это гарантирует стабильную работу ИТП и одновременно влечет за собой сокращение инвестиций на ИТП. Температура подачи из ЦТП корректируется в соответствии с температурным графиком по температуре наружного воздуха с учетом летнего ограничения, которое зависит от потребности системы ГВС в ИТП. Речь идет о предварительной корректировке параметров теплоносителя, что позволяет снизить потери тепла во вторичных трассах, а также увеличить срок службы компонентов тепловой автоматики в ИТП.

5. Индивидуальные тепловые пункты (ИТП)

Работа ИТП влияет на экономичность всей системы теплоснабжения. ИТП – стратегически важная часть системы теплоснабжения. Переход от 4-х трубной системы к современной 2-х трубной сопряжен с определенными трудностями. Во-первых, это влечет за собой необходимость инвестиций, во-вторых, без наличия определенного “ноу-хау” внедрение ИТП может наоборот увеличить текущие расходы управляющей компании. Принцип работы ИТП заключается в том, что тепловой пункт находится непосредственно в здании, которое отапливается и для которого готовится горячая вода. При этом к зданию подключено только 3 трубы: 2 для теплоносителя и 1 для холодного водоснабжения. Таким образом, упрощается структура трубопроводов системы, и при плановом ремонте трасс сразу имеет место экономия на прокладке труб.

5.1. Управление контуром отопления

Контроллер ИТП управляет тепловой мощностью системы отопления, изменяя температуру теплоносителя. Уставка температуры отопления определяется по температуре наружного воздуха и кривой отопления (погодозависимое управление). Кривая отопления определяется с учетом инерционности здания.

5.2. Инерционность здания

Инерционность зданий оказывает значительное влияние на результат погодозависимого управления отоплением. Современный контроллер ИТП должен учитывать этот влияющий фактор. Инерционность здания определяется значением постоянной времени здания, которое находится в диапазоне от 10 часов у панельных домов до 35 часов у кирпичных домов. Контроллер ИТП определяет на основании постоянной времени здания так называемую "комбинированную" температуру наружного воздуха, которая и используется в качестве корректирующего сигнала в автоматической системе регулирования температуры воды на отопление.

5.3. Сила ветра

Ветер существенно влияет на температуру помещения особенно в высотных зданиях, расположенных на открытых территориях. Алгоритм коррекции температуры воды на отопление, учитывающий влияние ветра, обеспечивает до 10% экономии тепловой энергии.

5.4 Ограничение температуры обратной воды

Все описанные выше виды управления косвенно влияют на снижение температуры обратной воды. Эта температура является главным показателем экономичной работы системы теплоснабжения. При различных режимах работы ИТП температура обратной воды может быть снижена при помощи функций ограничения. Однако все функции ограничения влекут за собой отклонения от комфортных условий, и их применение должно иметь технико-экономическое обоснование. В независимых схемах подключения контура отопления при экономичной работе теплообменника разность температур обратной воды первичного контура и контура отопления не должна превышать 5°С. Экономичность обеспечивается функцией динамического ограничения температуры обратной воды (DRT – differential of return temperature ): при превышении заданного значения разности температур обратной воды первичного контура и контура отопления контроллер снижает расход теплоносителя в первичном контуре. При этом снижается и пиковая нагрузка (рис. 1).

Статья 18. Распределение тепловой нагрузки и управление системами теплоснабжения

1. Распределение тепловой нагрузки потребителей тепловой энергии в системе теплоснабжения между , поставляющими тепловую энергию в данной системе теплоснабжения, осуществляется органом, уполномоченным в соответствии с настоящим Федеральным законом на утверждение схемы теплоснабжения , путем внесения ежегодно изменений в схему теплоснабжения.

2. Для распределения тепловой нагрузки потребителей тепловой энергии все теплоснабжающие организации, владеющие источниками тепловой энергии в данной системе теплоснабжения, обязаны представить в орган, уполномоченный в соответствии с настоящим Федеральным законом на утверждение схемы теплоснабжения, заявку, содержащую сведения:

1) о количестве тепловой энергии, которую теплоснабжающая организация обязуется поставлять потребителям и теплоснабжающим организациям в данной системе теплоснабжения;

2) об объеме мощности источников тепловой энергии, которую теплоснабжающая организация обязуется поддерживать;

3) о действующих тарифах в сфере теплоснабжения и прогнозных удельных переменных расходах на производство тепловой энергии, теплоносителя и поддержание мощности.

3. В схеме теплоснабжения должны быть определены условия, при наличии которых существует возможность поставок тепловой энергии потребителям от различных источников тепловой энергии при сохранении надежности теплоснабжения . При наличии таких условий распределение тепловой нагрузки между источниками тепловой энергии осуществляется на конкурсной основе в соответствии с критерием минимальных удельных переменных расходов на производство тепловой энергии источниками тепловой энергии, определяемыми в порядке, установленном основами ценообразования в сфере теплоснабжения, утвержденными Правительством Российской Федерации, на основании заявок организаций, владеющих источниками тепловой энергии, и нормативов, учитываемых при регулировании тарифов в области теплоснабжения на соответствующий период регулирования.

4. Если теплоснабжающая организация не согласна с распределением тепловой нагрузки, осуществленным в схеме теплоснабжения, она вправе обжаловать решение о таком распределении, принятое органом, уполномоченным в соответствии с настоящим Федеральным законом на утверждение схемы теплоснабжения, в уполномоченный Правительством Российской Федерации федеральный орган исполнительной власти.

5. Теплоснабжающие организации и теплосетевые организации, осуществляющие свою деятельность в одной системе теплоснабжения, ежегодно до начала отопительного периода обязаны заключать между собой соглашение об управлении системой теплоснабжения в соответствии с правилами организации теплоснабжения, утвержденными Правительством Российской Федерации.

6. Предметом указанного в части 5 настоящей статьи соглашения является порядок взаимных действий по обеспечению функционирования системы теплоснабжения в соответствии с требованиями настоящего Федерального закона. Обязательными условиями указанного соглашения являются:

1) определение соподчиненности диспетчерских служб теплоснабжающих организаций и теплосетевых организаций, порядок их взаимодействия;

3) порядок обеспечения доступа сторон соглашения или, по взаимной договоренности сторон соглашения, другой организации к тепловым сетям для осуществления наладки тепловых сетей и регулирования работы системы теплоснабжения;

4) порядок взаимодействия теплоснабжающих организаций и теплосетевых организаций в чрезвычайных ситуациях и аварийных ситуациях.

7. В случае, если теплоснабжающие организации и теплосетевые организации не заключили указанное в настоящей статье соглашение, порядок управления системой теплоснабжения определяется соглашением, заключенным на предыдущий отопительный период, а если такое соглашение не заключалось ранее, указанный порядок устанавливается органом, уполномоченным в соответствии с настоящим Федеральным законом на утверждение схемы теплоснабжения.

Особенностями теплоснабжения являются жесткое взаимовлияние режимов теплоснабжения и теплопотребления, а также множественность точек поставки нескольких товаров (тепловая энергия, мощность, теплоноситель, горячая вода). Цель теплоснабжения, не обеспечение генерации и транспорта, а поддержание качества названных товаров для каждого потребителя.

Эта цель достигалась относительно эффективно при стабильных расходах теплоносителя во всех элементах системы. Применяемое у нас “качественное” регулирование по самой своей сути подразумевает изменение только температуры теплоносителя. Появление зданий с регулируемым потреблением обеспечило непредсказуемость гидравлических режимов в сетях при сохранении постоянства расходов в самих зданиях. Жалобы в соседних домах пришлось ликвидировать завышенной циркуляцией и соответствующими массовыми перетопами.

Применяемые сегодня гидравлические расчетные модели, не смотря на их периодическую калибровку, не могут обеспечить учет отклонений расходов на вводах зданий из-за изменения внутренних тепловыделений и потребления горячей воды, а также влияния солнца, ветра и дождя. При фактическом качественно-количественном регулировании, необходимо “видеть” систему в реальном времени и обеспечить:

  • контроль максимального количества точек поставки;
  • сведение текущих балансов отпуска, потерь и потребления;
  • управляющее воздействие при недопустимом нарушении режимов.

Управление должно быть максимально автоматизированным, иначе его просто невозможно реализовать. Задача состояла в том, чтобы добиться этого без чрезмерных затрат на оборудование контрольных точек.

Сегодня, когда в большом количестве зданий имеются измерительные системы с расходомерами, датчиками температуры и давления, использовать их только для финансовых расчетов неразумно. АСУ «Тепло» построена, в основном, на обобщении и анализе информации «от потребителя».

При создании АСУ были преодолены типовые проблемы устаревших систем:

  • зависимость от корректности вычислений приборов учета и достоверности данных в неповеряемых архивах;
  • невозможность сведения оперативных балансов из-за нестыковок времени измерений;
  • невозможность контроля быстроменяющихся процессов;
  • несоответствие новым требованиям информационной безопасности федерального закона «О безопасности критической информационной инфраструктуры Российской Федерации».

Эффекты от внедрения системы:

Службы по работе с потребителями:

  • определение реальных балансов по всем видам товаров и коммерческих потерь:
  • определение возможных забалансовых доходов;
  • контроль фактического потребления мощности и соответствия ее ТУ на подключение;
  • введение ограничений соответствующих уровню платежей;
  • переход на двухставочный тариф;
  • контроль КПЭ для всех служб, работающих с потребителями, и оценка качества их работы.

Эксплуатация:

  • определение технологических потерь и балансов в тепловых сетях;
  • диспетчерское и аварийное управление по фактическим режимам;
  • поддержание оптимальных температурных графиков;
  • контроль состояния сетей;
  • наладка режимов теплоснабжения;
  • контроль отключений и нарушений режимов.

Развитие и инвестиции:

  • достоверная оценка результатов внедрения проектов улучшений;
  • оценка эффектов инвестиционных затрат;
  • разработка схем теплоснабжения в реальных электронных моделях;
  • оптимизация диаметров и конфигурации сети;
  • снижение затрат на подключение при учете реальных резервов пропускной способности и энергосбережения у потребителей;
  • планирование ремонтов
  • организация совместной работы ТЭЦ и котельных.