Скорость распространения ветровых волн. Ветровые волны. Основные характеристики волн

Волны – это неотъемлемая часть морской жизни яхтсмена, именно поэтому матерые мореманы всегда уделяют данному вопросу достаточно много времени. А вот почему, узнаем далее.

Все очень просто: волны в значительной мере определяют тот самый уровень комфортности нахождения в море. Большие и быстрые волны способны создать опасную ситуацию для судна и пассажиров на его борту, а маленькие и относительно безобидные волны вы можете даже и не заметить.

В данной статье мы хотели бы уделить внимание именно ветровым волнам, то есть тем, которые образуются под действием ветровых потоков (бывают еще волны, возникающие из-за повышенной сейсмической активности – цунами, влияние луны – приливы, отливы). Любая волна начинается с мелкой ряби на поверхности воды, из которой постепенно развиваются гравитационные волны, увеличивая свою длину и высоту.

Структура волны:

Ветровая волна всегда состоит из переднего и заднего склона, основное отличие их друг от друга заключается в том, что передний склон – это фронт направления волны и он всегда более крутой, а задний – наветренный и пологий. Водная масса в волне двигается практически по круговой траектории. Когда сила ветра стихает волна преобразуется в зыбь. На практике чаще всего наблюдается смешанное волнение: зыбь и ветровые волны одновременно.


Основные характеристики волн:

- Высота волн

Чаще всего под определением высота волны подразумевают именно значительную высоту ее волнения. Что это означает? Значительная высота определяется, как третья часть от самой наивысшей волны. В реальности наивысших волн будет мало, большинство волн будет иметь высоту ниже.

Крутизна волн

Данная величина может быть выражена простой формулой: отношение высоты волны к половине ее длины. Соответственно, чем выше волна, тем она круче.

Скорость волн

Кроме высоты и крутизны волны опытных яхтсменов также интересует такая величина, как скорость волны. Рассчитать ее можно по формуле длина волны / период волны. Отсюда вывод – чем длиннее волна, тем больше ее скорость.

Изучение закономерностей ветрового волнения интересно не только с позиций фундаментальной науки, но и с позиций прак­тических запросов, таких, например, как мореплавание, строи­тельство гидросооружений, портовых комплексов, расчет техни­ческого оснащения нефте- и газопромыслов на шельфе. Около 80% разведанных запасов нефти и газа сосредоточено на дне океанов и морей, и сооружение морских платформ и морское бурение требуют надежных данных о режиме ветрового волне­ния. Знание предельных размеров волн в различных акваториях Мирового океана необходимо и для обеспечения безопасности судоходства в этих местах.

Ветровые волны - явление, которое проявляется на поверх­ности любого водоема. Масштаб же этого явления для различ­ных водоемов будет разным. Леонардо да Винчи в свое время писал: «... волна бежит от места своего возникновения, а вода не Двигается с места. Наподобие волн, образуемых в мае на нивах течением ветров, волны кажутся бегущими по полю, между тем нивы со своего места не сходят». Эта особенность ветровых волн


194_______________________ Г л 10 Волны в океане_________________________

имеет колоссальное практическое значение: если бы вместе с формой, т. е. волной, перемещалась еще и масса, т. е. вода, то ни один корабль не мог бы двигаться против волнения. Ветровое волнение обычно разделяют на три типа:

Ветровые волны, которые находятся под непосредственным
действием ветра;

Волны зыби, которые наблюдаются после прекращения вет­
ра или после выхода волн из зоны действия ветра;

Смешанное волнение, когда ветровые волны накладываются на волны зыби

Поскольку ветры над океанами и морями, особенно в умерен­ных широтах, изменчивы по скорости и направлению, ветровое волнение пространственно неоднородно и существенно изменчи­во во времени. При этом волновые поля еще более неоднородны, чем ветровые, так как волны могут прийти в тот или иной район одновременно из разных (различно расположенных) зон зарождения.

Если внимательно смотреть на морскую взволнованную по­верхность, то можно прийти к выводу, что волны сменяют друг друга без какой-либо видимой закономерности - за большой волной может придти еще большая, а может и совсем малень­кая волна; иногда приходят несколько больших волн подряд, а порой между волнами расположен участок почти спокойной по­верхности. Большая изменчивость конфигурации взволнованной поверхности моря, особенно в случае смешанного волнения (а это наиболее распространенная ситуация) дала повод известному английскому физику лорду Томсону заявить, что «... основной закон ветрового волнения - это кажущееся отсутствие какого-либо закона». И, действительно, до настоящего времени мы не можем со всей определенностью предсказать последовательность чередования индивидуальных волн даже по какой-либо одной из характеристик, например по высоте, не говоря уже о других характеристиках, таких как форма гребней и ложбин и др.

При сложении двух гармонических колебаний, частоты кото­рых достаточно близки, возникает негармоническое колебание, называемое биением, которое характеризуется периодическим изменением интенсивности с частотой, равной разности взаи­модействующих колебаний (рис. 10 2). Нечто аналогичное на­блюдается и в ветровых волнах. Поскольку волны приходят в какую-либо область из разных зон и частоты их могут быть


Гл. 10. Волны в океане 197

Известность имеет юго-восточный район побережья Африки - здесь сильные ветры, разгоняющие большие волны, зыбь, прихо­дящая с юга, и Северное течение - все это создает необычайно тяжелые условия для плавания. Бартоломео Диаш, об экспеди­ции которого уже упоминалось, в этом районе океана две недели противостоял сильному волнению и, чтобы пройти это место, по легенде, продал душу дьяволу. В тот раз это помогло. Диаш про­шел это место, назвал его мысом Бурь, но через два года погиб там же. Португальский король Жоан II переименовал мыс Бурь в мыс Доброй Надежды, так как за ним открывалась надежда дойти до Индии морским путем. Именно с этим мысом связано возникновение легенды о «Летучем голландце». Именно здесь наблюдаются одиночные волны-убийцы, образующиеся в резуль­тате взаимодействия волн и течений. Эти волны представляют крутое вспучивание воды, имеют очень крутой передний склон и достаточно пологую ложбину. Высота их может превышать 15- 20 м, при этом они возникают часто при относительно спокойном море. Волны этого района представляют серьезную опасность и для современных судов. Большую опасность представляют также волны в тропических ураганах и тайфунах.

Наука о волнах возникла и развивалась как один из разделов классической гидродинамики и до 50-х годов XX в. практически не приступала к описанию такого сложного волнения, каким являются ветровые волны на поверхности водоемов. Степень волнения оценивалась главным образом по шкале Бофорта на глазок (табл. 10.3).

В начале XX в. с переходом от парусного флота к паровому количество аварий и гибели кораблей несколько уменьшилось (было 250-300 судов в год, стало ~150), и появилась недооценка природных сил при определении безопасности мореплавания. Среди судостроителей начала XX в. бытовало мнение, что «силы стихии сдаются перед новыми прочными кораблями». Это мне­ние стоило жизни многим морякам. Морские волны - достаточно грозное явление природы, а природа не терпит пренебрежитель­ного отношения к себе и зачастую мстит людям, инициируя тем самым стремление людей лучше и глубже понять ее законы.

В табл. 10.4 приведено количество судов, погибших из-за штормов и других неблагоприятных гидрометеорологических условий, главным образом, связанных с сильным волнением, за период с 1975 по 1979 г. Эта выборка относится только к торго­вым судам относительно большого размера (более 500 регистро­вых тонн). Количество аварий па более мелких судах за этот же период определяется четырехзначным числом. Стало ясно, что


Гл. 10. Волны в океане 199

Для измерения волн обычно используются акселерометриче-ские буйковые волнографы, основанные на принципе акустиче­ского эхолота, и волнографы гидростатического типа. Волногра­фы обычно измеряют среднюю и максимальную высоту волн, средний период и длину волны, частотный спектр волнения.

В акселерометрическом волнографе элементы волнения опре­деляются путем двойного интегрирования сигнала, получаемого от акселерометрического датчика. Наиболее распространенные зарубежные волнографы устроены именно по такому принци­пу. Принцип действия гидростатических волнографов основан на связи гидростатических колебаний на некоторой глубине с характеристиками колебаний волновой поверхности.

Эхолокация используется при зондировании мгновенных зна­чений высоты возвышения водной поверхности со свободнопла­вающего или заякоренного буя (прямой эхолот). Волнографы, принцип действия которых основан на обратной эхолокации, осуществляют зондирование границы раздела вода-воздух из-под воды.

Радиолокаторы с синтезированной апертурой, альтиметры, установленные на спутниках, позволяют измерять основные ха­рактеристики ветровых волн. Дистанционные методы позволяют получать характеристики ветровых волн на значительных тер­риториях. На основе таких измерений, создаются современные атласы ветрового волнения. Представления о волновых данных можно получить на сервере http://www.waveclimate.com.

Как показала история развития наших фундаментальных знаний о волнении, необходима тесная связь теоретических, экс­периментальных и натурных исследований.

Ветер является существеннейшим параметром, от которого зависят геометрические характеристики волнения. Однако при устойчивом и довольно продолжительном ветре средние харак­теристики волн увеличиваются по пути их распространения, по­ка они находятся под действием ветра. Этот путь называется длиной разгона ветра, или просто разгоном. Трудности наблю­дений морских волн и их регистрации в естественных условиях заставили ученых обратиться к лабораторному моделированию ветрового волнения. На заре изучения морского волнения лабо­раторное моделирование было почти единственным источником количественных характеристик волн. Однако этот источник ока­зался весьма ограниченным - и вот почему. Основная трудность при лабораторном моделировании волнения - обеспечить доста­точно большой разгон волн, т. е. нужно иметь длинные лотки. Средние параметры волн обычно изменяются во времени и в



208_______________________ Гл. 10. Волны в океане_________________________

при этом каждая спектральная составляющая достигает мак­симума, затем уменьшается до минимума, и, наконец, выходит на равновесное значение. Этот эффект называется эффектом превышения. Он был выявлен по измерениям в натурных и лабораторных условиях. Передний участок спектра формируется вследствие экспоненциального развития его составляющих и ме­ханизма нелинейного перераспределения энергии между спект­ральными составляющими. Уравнение баланса ветровой энергии подробно рассмотрено в монографиях .

Наиболее известным и изученным видом длинных волн яв­ляются приливы. Приливы вызываются гравитационными (при-ливообразующими) силами Луны и Солнца. В океанах и морях приливы проявляются в виде периодических колебаний уровня водной поверхности и течений. Приливные движения существу­ют и в атмосфере, а приливные деформации - в твердой Земле, однако здесь они проявляются менее выражено, чем в океане.

В прибрежных зонах величина колебаний уровня достигает 5-10 м. Максимальные значения колебаний уровня достигаются в заливе Фанди (Канада) - 18 м. У берегов России самый высокий прилив наблюдается в Пенжинской губе - 12,9 м. Скорость приливных течений в прибрежной зоне достигает 15 км/час. В открытом океане колебания уровня и скорости течений много меньше.

Приливообразующая сила Луны примерно в два раза боль­ше приливообразующей силы Солнца. Вертикальные составля­ющие приливообразующей силы много меньше силы тяжести, поэтому их эффект ничтожен. Но горизонтальная составляющая приливообразующей силы вызывает значительные перемещения частиц воды, которые и проявляются в форме приливов.

Совместное действие Луны и Солнца приводит к формиро­ванию сложных форм колебаний уровня. Выделяют следующие основные виды приливов: полусуточный, суточный, смешанный, аномальный. В полусуточном приливе период колебаний водной поверхности равен половине лунных суток. Амплитуда полусу­точного прилива изменяется в соответствие с фазами Луны. По­лусуточный прилив наиболее распространен в Мировом океане. Период колебаний уровня в суточном приливе равен лунным суткам. Амплитуда суточного прилива зависит от склонения Луны. Смешанные приливы подразделяются на неправильные полусуточные и неправильные суточные. Аномальные приливы


Гл. 10. Волны в океане 209

Имеют несколько разновидностей, но все они достаточно редки в Мировом океане.

Для морской практики большое значение имеет прогноз (или предвычисление) приливных уровней. Предвычисление прили­вов основано на гармоническом анализе данных наблюдений за колебаниями уровня. Выделив по данным наблюдений основ­ные гармонические составляющие, производят расчет уровня в будущем. Наиболее полное гармоническое разложение приливо-образующего потенциала, выполненное А. Дудсоном, содержит более 750 составляющих. Методы предвычисления приливов по­дробно рассмотрены в .

Первая теория приливов была разработана И.Ньютоном и называется статической. В статической теории океан счита­ется покрывающим всю Землю, которая рассматривается как недеформируемая, вода считается невязкой и безынерционной. При океане, покрывающем всю Землю, статический прилив с точностью до постоянного множителя описывается приливным потенциалом. Водная поверхность океана описывается так на­зываемым «приливным эллипсоидом», большая ось которого направлена на возмущающее светило (Луна, Солнце) и следует за ним. Земля же вращается вокруг своей оси и внутри этого «при­ливного эллипсоида». Статическая теория, несмотря на слабость основных допущений, правильно описывает основные свойства приливов.

Более совершенная динамическая теория приливов, в кото­рой уже рассматривается движение волн в океане, была по­строена Лапласом. В динамической теории уравнения движения и уравнение неразрывности записываются в форме приливных уравнений Лапласа. Приливные уравнения Лапласа являются уравнениями в частных производных, записанными в сфери­ческой системе координат, поэтому их аналитическое решение может быть получено только для идеальных случаев, например узкий глубокий канал, опоясывающий всю Землю (так называ­емая каналовая теория приливов). Для небольших акваторий приливные уравнения Лапласа могут быт записаны в декартовой системе координат. Результаты расчетов приливов в Мировом океане представляются в форме специальных карт, на которых наносится положение гребня приливной волны в различные мо­менты времени (обычно лунного). Современные карты приливов строят на основе численных методов с учетом данных наблюде­ний .


210 Гл. 10 Волны в океане

Теория длинных волн исходит из предположения, что глубина жидкости Н мала по сравнению с длиной волны А, т.е. А ^> Н. В рамках теории длинных волн описываются приливные явле­ния, волны цунами, а также ветровые волны и зыбь, распростра­няющиеся на мелководье. К длинным волнам относятся также волны паводка и бор, наблюдающиеся на водохранилищах и реках.

мплитуда длинных волн а много меньше их длины А го можно проводить описание, используя линейную теирию. шсли же эти условия не выполняются, то необходимо учитывать нелинейные эффекты .

Цунами в дословном переводе с японского - «большая волна в гавани». Под цунами принято понимать гравитационные волны, возникающие в море вследствие крупномасштабных, непродол­жительных возмущений (подводные землетрясения, извержение подводных вулканов, подводные оползни, падение в воду метео­ритов, обломков скал, взрывы в воде, резкое изменение метеоро­логических условий и т. п.).

Характерная временная длительность волны цунами состав­ляет 10-100 мин; длина - 10-1000 км; скорость распространения L™Am,m ..^^ч^ тт^г,л,„„ ть на основе длинноволнового приближе-

ускорение силы тяжести, Я -- глубина а высота при накате на берег может достигать десятков метров. Эти волны очень длинные, в первом приближении к ним применима теория «мелкой воды».

По числу погибших в год в результате стихийных бедствий на Земле цунами занимает 5-е место после наводнений, тайфу­нов, землетрясений, засухи. Распределение цунами по регионам характеризуется сильной неоднородностью, основное количество цунами происходит в морях Тихого океана.

Распределение цунами в океанах и морях характеризуется следующим образом:

Тихий океан (его периферия) 75%

i Атлантический океан 9%

Индийский океан 3%

Средиземное море 12%

остальные моря 1%

Для того чтобы получить представление о цунами, приве­дем характеристики крупнейших цунами за столетний интервал (1880-1980) в табл. 10 6.


Для классификации цунами академик С.Л.Соловьев пред­ложил полуколичественную шкалу (на основе анализа историче­ских цунами), в основе которой лежит высота подъема уровня.

Катастрофические цунами (интенсивность 4). Средний подъ­ем уровня на участке берега длиной 400 км (и более) достига­ет 8 м. Волны местами имеют высоту 20-30 м. Происходит раз­рушение всех сооружений на берегу. Такие цунами происходят по всему побережью Тихого океана.

Очень сильные цунами (интенсивность 3). На берегу про­тяженностью 200-400 км вода поднимается на 4-8 м, местами до 11 м. Такие цунами наблюдаются на большей части Мирового океана.

Сильные цунами (интенсивность 2). На берегу длиной 80-200 км средний подъем уровня воды составляет 2-4 м, места­ми 3-6 м.

Умеренные цунами (интенсивность 1). На участке 70-80 км вода поднимается на 1-2 м.

Слабые цунами (интенсивность 0). Подъем уровня мень­ше 1 м.


212 Гл. 10 Волны в океане

Прочие цунами имеют интенсивность от -1 до -5.

Чем сильнее цунами, тем реже они происходят. Цунами ин­тенсивностью 4 происходят 1 раз в 10 лет, причем в Тихом океане; интенсивностью 3 - один раз в 3 года; интенсивностью 2 - 1 раз в 2 года; интенсивностью 1 - 1 раз в год; интенсивностью 0 - 4 раза в год.

Основные причины цунами: землетрясения, взрывы вулкани­ческих островов и извержение подводных вулканов, обвалы и оползни. Рассмотрим кратко указанные причины в отдельности.

Около 85% цунами вызывается подводными землетрясения­ми. Это обусловлено сейсмичностью многих океанических райо­нов. В среднем ежегодно происходит 100 000 землетрясений, из них 100 имеют катастрофический характер. В среднем 1 раз в 10 лет землетрясение вызывает в Тихом океане цунами высотой (средней) до 8 м (в отдельных пунктах до 20-30 м) (интенсив­ность 4). Цунами высотой 4-8 м (сейсмического происхождения) возникает раз в 3 года, высотой 2-4 м - ежегодно.

На Дальнем Востоке (РФ) за 10 лет происходит 3-4 цунами высотой более 2 м. Самое трагическое цунами в России произо­шло 4 ноября 1952 г. в Северо-Курильске. Город был практически полностью разрушен. Ночью началось землетрясение, примерно через 40 минут после его окончания на город обрушился водяной вал, который отступил через несколько минут. Морское дно обна­жилось на несколько сот метров, но примерно через 20 минут на город обрушилась волна высотой более 10 м, которая уничтожи­ла практически все на своем пути. После отражения от сопок, окружающих город, волна скатилась в низину, где ранее был центр города, и довершила разрушение. Цунами застали жителей города врасплох.

На Земле выделяются две зоны очагов землетрясений. Одна расположена в меридиональном направлении и проходит вдоль восточного и западного берегов Тихого океана. Эта зона дает основную массу цунами (до 80%). Вторая зона очагов земле­трясений занимает широтное положение - Апеннины, Альпы, Карпаты, Кавказ, Тянь-Шань. В пределах этой зоны цунами про­исходят на берегах Средиземного, Адриатического, Аравийского, Черного морей, в северной части Индийского океана. В пределах этой зоны происходит менее 20% всех цунами.

Механизм генерации цунами при землетрясениях следующий. Основная причина - быстрое изменение рельефа морского дна


Гл. 10 Волны в океане 213

(подвижка), вызывающее отклонения поверхности океана от рав­новесного положения. В виду малой сжимаемости воды происхо­дит быстрое опускание или подъем значительной массы воды в области подвижки. Образовавшиеся возмущения распространя­ются в виде длинных гравитационных волн.

Для количественного описания землетрясений используются интенсивность и магнитуда. Интенсивность оценивается в баллах (12-балльная шкала MSK-64). (В Японии действует 7-балльная шкала). Балл - единица измерения сотрясения грунта, почвы. Главная характеристика, определяющая балльность, - реакция грунтов на сейсмические волны. Энергия землетрясения опреде­ляется магнитудой М.

Важнейшая задача в прогнозе цунами сейсмического про­исхождения - установление признаков цунамигенности земле­трясений. Сейчас считают, что если магнитуда землетрясения превышает некоторое пороговое значение М п, очаг расположен под дном моря, то землетрясение будет цунамигенным.

Для Японии предложены эмпирические формулы, связываю­щие магнитуду цунамигенных землетрясений и глубину очага Н (в километрах):

В энергию цунами преобразуется не более 0,1 энергии, выделив­шейся при землетрясении.

В результате анализа натурных данных установлены сле­дующие свойства очага цунамигенных землетрясений. Энергия распространяется, в основном, по нормали к главной оси очага. Степень направленности зависит от вытянутости очага. Оча­ги крупных цунами, как правило, сильно вытянуты. Их оси ориентированы параллельно ближайшему берегу, впадине или островной дуге, поэтому основной источник энергии направлен в сторону моря. Отношение амплитуды волны вдоль разлома и амплитуды волны в направлении, перпендикулярном разлому, приблизительно равно 1/10-1/15. Отдельные измерения подтвер­ждают это, например, цунами, вызванное Аляскинским земле­трясением 1964 г., волны от которого были зарегистрированы на нескольких сейсмических станциях Тихого океана. Это позволи­ло построить достаточно подробную диаграмму направленности цунами.

Подводные землетрясения вызывают не только волны цуна­ми, они способны вызывать сильные возмущения водного слоя в эпицентральной области, что может проявляться в виде резкого увеличение вертикального обмена в океане . Вертикальный


214 Гл 10 Волны в океане

Обмен приводит к трансформации полей температуры, солено­сти и цветности океана. Выход глубинных вод на поверхность приведет к образованию обширной аномалии температуры по­верхности океана. Вынос биогенов в обычно обедненный этими веществами поверхностный слой приводит к увеличению кон­центрации фитопланктона. Так как фитопланктон является пер­вичным звеном в трофической цепи и определяет биопродук­тивность вод, возможны явления типа миграции рыбы, морских животных и т. п. Непосредственно над эпицентральной областью наблюдаются сильные возмущения водного слоя, проявляющие­ся в бурлении воды, выбросах водяных столбов, формировании крутых стоячих волн амплитудой до 10 м. Среди моряков это яв­ление известно как моретрясение. В результате анализа спутни­ковых данных температуры поверхности океана и сейсмических данных было выявлено понижение температуры поверхности океана и увеличение концентрации хлорофилла «а», которые по­следовали за серией сильных подводных землетрясений в районе острова Сулавеси (Индонезия, 2000). Серия лабораторных экс­периментов позволила установить, что колебания дна бассейна могут приводить к генерации вертикальных потоков, способных разрушить имеющуюся устойчивую стратификацию и привести к выходу холодных и насыщенных биогенами глубинных вод на поверхность, что приведет к образованию аномалии температу­ры поверхности океана и концентрации хлорофилла.

На земле около 520 действующих вулканов, две трети ко­торых находится на берегах и островах Тихого океана. Их из­вержения часто приводят к возникновению цунами. Приведем некоторые примеры.

При взрыве вулкана Кракатау 26 августа 1883 г. в Индонезии высота волны цунами достигла 45 м, погибло 36000 человек. Волны цунами обежали весь мир. Энергия этой катастрофы эквивалентна энергии взрыва 250-500 тыс. атомных бомб типа хиросимской.

Взрыв вулканического острова Тир в Эгейском море 35 веков назад (вулкан и остров называли раньше Санторин) явился при­чиной гибели Минойской цивилизации. Это событие, вероятно, послужило прообразом Атлантиды. Сотрудники Союзморнии-проекта С.Стрекалов и Б.Дугинов так описывают гибель Ми­нойской цивилизации.

«Великая Минойская цивилизация отличалась непревзойден­ными произведениями искусства и художественного ремесла, ве­личественными дворцами. В середине XV в. до н. э. на Крит обрушилась катастрофа. Почти все дворцы были разрушены,


Г л 10. Волны, в океане 215

Поселения покинули их обитатели. Существуют две гипотезы гибели. Согласно одной ее разрушили варвары - греки-ахейцы, согласно другой, причиной стал природный катаклизм. Пример­но 3,5 тыс. лет назад в Эгейском море произошел взрыв вулка­нического острова Санторин. В результате катастрофы образо­вались гигантские волны, которые обрушились на остров Крит и распространились до Египта, затопив дельту Нила. Так ли это было? Могла ли она стать действительной причиной гибели цивилизации? Эти вопросы определили постановку нижеследую­щей гидродинамической задачи: «Катастрофическое цунами на побережье Крита и в Египте XV-XIV вв. до н.э.»

В прибрежной зоне Крита под водой на глубинах от 8 до 30 м обнаружены керамические изделия, а на глубинах 30-35 м - строительные блоки, относящиеся к античному времени. Исхо­дя из того, что отливная волна равна приливной, первая так­же имела высоту 30-35 м. В поиске аналогов подобной волны в примерно соответствующем подводном и надводном рельефе местности мы обратились к наиболее мощной природной катаст­рофе последних столетий - взрыву вулкана Кракатау (в конце XIX в.). Там волна цунами, по имеющимся данным, достигла в очаге высоты 40 м. Исходя из аналога, мы предположили, что в районе острова Санторин на глубине около 300 м про­изошло землетрясение силой 8,5 балла. Далее, направление оси очага мы приняли совпадающим с направлением изобат в районе острова Санторин и параллельным продольной острова Крит. Затем, в результате расчетов, выполненных по оригинальной методике, разработанной в Союзморниипроекте, установили, что в соответствии с исходными данными, должна была возникнуть одиночная волна цунами типа солитона высотой 44 м и длиной около 100 км; при этом длина продольной оси очага равна 220 км, а его ширина - 50 км. Распространение подобной волны дает возможность предположить нижеследующее.

К югу очага волна уменьшается, и у северного побережья Крита ее высота составляет 31 м. С прохождением в заливы острова высота волны возрастает до 50 м, а после ее отраже­ния от обрывистых берегов и материкового склона отдельные заплески могут достигать высоты 60-100 м. В Средиземное море волна проходит через проливы, ослабевая за счет экранирования островами. По выходе из пролива Касос у южного побережья Крита высота волны составляет 9,3 м. После пересечения Среди­земного моря и взаимодействия волны с материковым склоном и шельфом в районе дельты Нила ее высота становится рав­ной 4 м. По дельте Нила, имеющей малый уклон поверхности


216 Гл 10. Волны в океане.

(порядка 5,5 10~ 5), волна распространяется на расстояние 73 км вплоть до устьевой части на коренном берегу, т. е. практически вся мористая часть дельты подвергается затоплению. В дельте Нила в течение исторического периода времени в несколько ты­сяч лет скорость отложения аллювия была практически посто­янной и равной 0,9-1,3 мм в год. Исключение составляет второе тысячелетие до н.э., когда заметных отложений аллювия по не вполне понятным причинам обнаружить не удалось. Можно предположить, что волна цунами, затопившая в этот период времени дельту, смыла и унесла в море весь поверхностный аллювиальный слой.

Катастрофа, произошедшая на острове Санторин, наряду с экологическими, имела, вероятно, и серьезные социальные по­следствия. Громадные волны, высотой 30-50 м были вполне в состоянии уничтожить существовавшую на Крите Минойскую цивилизацию. Затопление дельты Нила в период конца XVIII- начала XIX династии фараонов имело прежде всего следствием резкое ухудшение экологической обстановки, связанное с исчез­новением плодородного слоя почвы, засолением и образовани­ем болот. Социальные последствия из-за кризиса земледелия в дельте, в конечном счете, могли способствовать началу упадка Египетского царства.»

В недавнее время (8.01.1933) вулканический взрыв на остро­ве Харимкатан привел к образованию цунами, при этом волны достигали 9 м (Курильская гряда).

Наиболее впечатляющий пример образования волны цунами при обвале имел место 10 июля 1958 г. Сход лавины с поро­дой объемом 300 млн м 3 со склонов горы Фейруэзер (Аляска) в бухту Литуя создал цунами высотой 60 м с максимальным заплеском 524 м (заплеск - высота подъема воды относительно невозмущенного уровня при накате волны на берег).

Цунами высотой до 15 м возникли от падения с высоты 200 м обломки скалы (остров Мадейра, 1930). В Норвегии в 1934 г. цунами высотой 37 м возникли от падения скалы массой 3 млн т с высоты 500 м.

Оползни на склоне океанической впадины (Пуэрто-Рико) в декабре 1951 г. вызвали волну цунами. Оползни, мутьевые по­токи часто наблюдаются на материком склоне океана, при этом роль индикаторов образования и прохождения оползней или му-тьевых потоков играют разрывы кабелей, трубопроводов.

6 октября 1979 г. цунами высотой 3 м обрушились на Лазур­ный Берег в районе Ниццы. Тщательный анализ сейсмической


Гл. 10. Волны в океане 217

Обстановки, метеоусловий позволил заключить, что причиной цу­нами явились подводные оползни. Инженерные работы на шель­фе могут спровоцировать образование оползней и, как следствие, возникновение цунами .

Взрывы в воде атомных и водородных бомб способны вызвать волну типа цунами. Например, на атолле Бикини взрыв «Бей-кер» создал волны высотой около 28 м на расстоянии 300 м от эпицентра. Военными рассматривался вопрос об искусственном создании цунами. Но так как при образовании цунами в вол­новую энергию превращается только небольшая часть энергии взрыва, и направленность волны цунами низка, энергетические затраты на создание искусственного цунами (мощного волнового наката в определенной части побережья) очень велики.

В развитии цунами обычно выделяют 3 стадии: 1) формиро­вание волн и их распространение вблизи очага; 2) распростране­ние волн в открытом океане большой глубины; 3) трансформа­ция, отражение и разрушение волн на шельфе, набегание их на берег, резонансные явления в бухтах и на шельфе. Исследован-ность этих стадий существенно различна.

Для решения гидродинамической задачи расчета волн необ­ходимо задать начальные условия - поля смещений и скоростей в очаге. Эти данные можно получить прямым измерением цуна­ми в океане или косвенно, путем анализа характеристик про­цессов, порождающих цунами. Первые регистрации цунами в открытом океане проведены С.Л.Соловьевым и др. в 1980 г. у Южно-Курильских островов. Существует принципиальная воз­можность определения параметров в очаге на основе решения обратной задачи - на основе немногочисленных проявлений цу­нами на берегу определить его параметры в очаге. Однако натур­ных данных для корректного решения такой обратной задачи, как правило, очень мало.

Для предсказания проявления цунами в прибрежной зоне и решения других инженерных задач нужно знать изменение высо­ты, периода, направления фронта волны вследствие рефракции. Этой цели служат рефракционные диаграммы, на которых ука­зывают положение гребней волн (фронтов) на разных расстояни­ях в один и тот же момент времени, или положения гребня одной и той же волны в разные моменты времени. Лучи (ортогональные положению фронтов) проводятся на этой же карте. Считая, что поток энергии между двумя ортогоналями сохраняется, можно оценить изменение высоты волны. Пересечение лучей приводит к неограниченному росту высоты волны. Мощность, переносимая





220 Г л 10. Волны в океане

Вздымающийся бурун - волна накатывается без обрушения на крутых откосах.

Основной причиной возникновения волн на поверхности воды является воздействие ветра на водную поверхность. Волны возникают также от движения судов, а на водохранилищах и от пропусков через плотины.

Волны и волновые движения в океанах характеризуются чрезвычайно широким диапазоном длин волн, т. е. расстояний от гребня до гребня, и периодов, т. е. интервалов времени, необходимых для прохождения двух последовательных гребней мимо наблюдателя. Самые малые -- капиллярные поверхностные волны, имеющие длины в несколько сантиметров и периоды в доли секунды. Самые длинные волны -- приливные, расстояние между их гребнями достигает половины окружности Земли, т. е. около 20 тыс. км. Но период приливных волн не самый большой. Длинным периодом отличаются медленные внутренние волны, которым требуются месяцы, чтобы пересечь океан.

По силам, вызывающим волновое движение, т. е. по происхождению, можно выделить в океане (море) следующие типы волн:

  • * ветровые - вызванные ветром и находящиеся под его воздействием;
  • * приливные - возникающие под действием периодических сил притяжения Луны и Солнца;
  • * анемобарические - связанные с отклонением поверхности океана от положения равновесия под действием ветра и атмосферного давления;
  • * сейсмические (цунами) - возникающие в результате динамических процессов, протекающих в земной коре и, в первую очередь, подводных землетрясений, а также извержений вулканов, как подводных, так и прибрежных;
  • * корабельные - создающиеся при движении корабля.

Основные элементы волны.

  • Ш Средняя волновая линия - горизонтальная линия, пересекающая волновой профиль так, что суммарные площади выше и ниже этой линии равны.
  • Ш Гребень - часть волны, располагающаяся выше средней волновой линии.
  • Ш Вершина волны - самая высокая точка гребня.
  • Ш Впадина (ложбина) - часть волны, располагающаяся между двумя соседними гребнями ниже средней волновой линии.
  • Ш Подошва волны - самая низкая точка впадины.
  • Ш Фронт волны - линия вершин гребней в плане.
  • Ш Главное направления распространения волны - направление перпендикулярное фронту волны.
  • Ш Высота волны - превышение вершины волны над подошвой.
  • Ш Длина волны - расстояние между соседними вершинами или подошвами.
  • Ш Система волнения - ряд последовательных волн, развивающихся в определенных условиях.
  • Ш Крутизна волны - отношение высоты волны к длине.
  • Ш Период волны - промежуток времени, в течение которого частицы совершают полный оборот по всем орбитам, или промежуток времени между прохождением вершин двух соседних волн через фиксированную точку водоема.
  • Ш Скорость волны - скорость перемещения гребня волны в главном направлении ее движения.
  • Ш Возраст волны - отношение скорости волны к скорости ветра.

Ветровые волны.


Воздействуя на поверхность воды, ветер, благодаря трению о воду, создает касательные напряжения и влекущие усилия, а также вызывает местные колебания давления воздуха. В результате на поверхности воды даже при ветре со скоростью 1 м/с, образуются маленькие волны, имеющие высоту, измеряемую в миллиметрах, и длину - в сантиметрах. Эти едва зародившиеся волны имеют вид ряби. Так как существование таких волн связано с поверхностным натяжением, их называют капиллярными. Стоя ранним утром на высоком берегу над спокойным озером, мы можем видеть, как первый слабый ветерок сменяет безветрие и на поверхности воды внезапно появляются и исчезают пятна легкой ряби, которые иногда называют «кошачьими лапками». Это и есть участки развития капиллярных волн с длиной волны всего лишь 2-5 см. Трение о воздух морщит водную гладь в череду мелких волн, а поверхностное натяжение воды все время стремится возвратить поверхности ее первоначальную гладкость, характеризующуюся минимальной энергией. Вот так и теряют капиллярные волны свою энергию движения, переходящую благодаря молекулярной вязкости воды непосредственно в тепло.

Рост волн приводит к их объединению в группы и удлинению до нескольких метров. Волны становятся гравитационными. Длина поверхностной волны увеличивается до 5 - 30 см, сила тяжести начинает оказывать все большее влияние на ее форму и движение, оставляя силе поверхностного натяжения важную роль только в круто искривленной части волн вблизи гребня. Имея период 1 с, эти волны распространяются очень медленно -- гораздо медленнее типичных поверхностных волн. Соответственно такие волны наблюдаются на склонах и гребнях более быстрых ветровых волн и зыби.

Ветровое волнение зависит от величины водного пространства, открытого для разгона волны, скорости ветра и времени действия его в одном направлении, а также глубины. С уменьшением глубины волна становится крутой. Слабый ветер, дующий длительное время на большом водном пространстве, может вызвать волнение более значительное, чем сильный кратковременный ветер на малой водной поверхности.

Ветровые волны несимметричны, наветренный склон их пологий, подветренный -- крутой. Так как ветер на верхнюю часть волны действует сильнее, чем на нижнюю, гребень волны рассыпается, образуя «барашки».

В ветровых волнах содержится больше энергии, чем в океанских волнах любого другого типа. Такая энергия, однако, распределяется по Мировому океану неравномерно. Возбудителем этих поверхностных волн служат ветры; поэтому можно ожидать, что волны с наибольшим запасом энергии возникают в тех же поясах, где дуют приповерхностные западные и восточные ветры.

Наиболее часто (практически всегда) на поверхности морей и океанов наблюдаются ветровые и приливные волны, при этом ветровые волны доставляют наибольшие неприятности мореплавателям: вызывают качку корабля, заливают палубу, уменьшают скорость хода, уклоняют его от заданного курса, могут наносить повреждения, а подчас вызывают гибель судна, разрушают берега и береговые сооружения.

При продолжительном действии ветра на по­верхности воды развивается волнение, при котором частицы воды совершают сложное вращательно-поступательное движение. Вода при волнении производит на сооружение дополнительное давление (сверх гидростатического, отвечающего расчетному уровню), назы­ваемое волновым.

Вид волн и значение их параметров (высота h , период , длина волны, - рис. 2.6) зависят от волнообразующих факторов - ско­рости ветра W , продолжительности его действия t , глубины водое­ма H и длины разгона волны D .


Рис. 2.6 Параметры волны

Высоту волны определяют по са­мому невыгодному сочетанию скоростей ветра при расчетном штор­ме и длины разгона. Длина разгона равна расстоянию по прямой от берега до сооружения, а величину скорости ветра в этом направ­лении определяют по розе ветров (рис. 2.7).

Рис. 2.7 Роза ветров (а ) и длина разгона волны (б )

Волны, периоды и высота которых изменяются от одной волны к другой случайным образом, называют нерегулярными; если пе­риоды и высоты отдельных волн одинаковы, их классифицируют как регулярные.

Волновое поле водоема по длине разгона волны делится на зоны (рис. 2.8): I - глубоководную (), где практически дно не влияет на параметры волн;II - мелководную (), в которой по мере уменьшения глубины уменьшаются длина и ско­рость волн и увеличивается крутизна переднего и пологость зад­него склонов (при волны разрушаются и преобразуются в прибойные волны); III - зону прибойных волн, опрокидываю­щихся при движении (); IV - приурезовую, где волны окончательно раз­рушаются и затем накаты­ваются на берег.
Скорость ветра, опреде­ляемая на какой-либо высоте, приводится к высоте 10 м над уровнем воды. Обе­спеченность расчетного шторма для сооружений I и II класса - 2%, III и IV - 4%.

Из-за малой точности оп­ределения волнообразующих факторов, в частности ско­рости ветра, точность расче­та элементов волн невысока. Скорость ветра оценить с достаточной точностью по непосредственным наблюде­ниям не удается вследствие того, что только после созда­ния водохранилища склады­вается соответствующая ситуация, определяющая формирование потока воздуха при переходе с материка на водную поверхность. Получение расчетной высоты волны с точностью примерно 10% требует точности вводимой в расчет скорости ветра около 5%, что пока недостижимо. В результате приближенного определения высо­ты волны получается приближенное значение волновой нагрузки.

Система волн, образующихся при расчетном шторме, характери­зуется средними значениями и , для определения которых вы­числяют по заданным W , H и D безразмерные параметры , , и далее по номограмме рис. 2.9 (СНиП И-57-75) отыскиваются , , определяющие и .
Верхняя огибающая номограммы отвечает глубоководной зоне, для которой расчет и ведут по исходным параметрам и ; при отсутствии фактических данных принимается t = 6 ч.

Oпределив и , по наименьшим их величинам находят средние высоту волны и период .
Поле ниже огибающей кривой отвечает мелководной зоне с ук­лоном дна 0,001 и меньше. Расчет и ведут по параметрам


Рис. 2.8 Деление акватории на зоны по глубине:
I - глубоководная; II - мелководная; III - прибойная; IV - приурезовая; 1 – створ первого обрушения волн; 2 - последнего обрушения

Рис. 2.9 Графики для определения средних значений элементов ветровыхволн в глубоководной I и мелководной (при уклоне дна ) II зонах

и . При уклоне дна более 0,001 расчет высоты волны h производят [СНиП 11-57-75, прилож. I, п. 17] с учетом трансфор­мации волн. т. е. изменения параметров волн вследствие уменьше­ния глубины с учетом рефракции - искривления линии гребня волны при косом подходе волны - и с учетом потерь энергии.

Среднюю длину волны в глубоководной зоне определяют по фор­муле

(2.10)

Высоту волны р % обеспеченности в системе волн глубоководной зоны определяют умножением средней высоты волны на коэффи­циент который зависит от волнообразующих факторов и имеет величину, равную или несколько меньшую указанной ниже.

Величина критической глубины Н кр (глубина разрушения волн) зависит от многих одновременно действующих факторов. Можно принимать Н кр = (1,25-1,8)h i .

Высота волны отсчитывается от расчетного уровня, который при заданной отметке уровня воды в верхнем бьефе может изме­няться за счет ветрового нагона на величину

(2.11)

Где - угол между продольной осью водоема и направлением ветра.

Волны, которые мы привыкли видеть на поверхности моря, образуются главным образом под действием ветра. Однако волны могут возникать и по другим причинам, тогда они называются;

Приливные, образующиеся под действием приливообразующих сил Луны и Солнца;

Барические, возникающие при резких изменениях атмосферного давления;

Сейсмические (цунами), образующиеся в результате землетрясения или извержения вулканов;

Корабельные, возникающие при движении судна.

Ветровые волны являются преобладающими на поверхности морей и океанов. Волны приливные, сейсмические, барические и корабельные существенного влияния на плавание судов в открытом океане не оказывают, поэтому на их описании мы останавливаться не будем. Ветровое волнение - один из основных гидрометеорологических факторов, определяющих безопасность и экономическую эффективность мореплавания, так как волна, набегая на судно, обрушивается на него, раскачивает, бьет в борт, заливает палубы и надстройки, уменьшает скорость хода. Качка создает опасные крены, затрудняет определение места судна и сильно изнуряет команду. Кроме потери скорости, волнение вызывает рыскание и уклонение судна с заданного курса, и для удержания его требуется постоянная перекладка руля.

Ветровым волнением называется процесс формирования, развития и распространения вызванных ветром волн на поверхности моря. Ветровому волнению присущи две основные черты. Первая черта - нерегулярность: неупорядоченность размеров и форм волн. Одна волна не повторяет другую, за большой может следовать малая, а может и еще большая; каждая отдельная волна непрерывно меняет свою форму. Гребни волн перемещаются не только в направлении ветра, но и в других направлениях. Такая сложная структура возмущенной поверхности моря объясняется вихревым, турбулентным характером ветра, образующего волны. Вторая черта волнения заключается в быстрой изменчивости его элементов во времени и пространстве и связана также с ветром. Однако размеры волн зависят не только от скорости ветра, существенное значение имеет продолжительность его действия, площадь и конфигурация водной поверхности. С точки зрения практики нет необходимости знать элементы каждой отдельно взятой волны или каждого волнового колебания. Поэтому изучение волнения сводится в конечном итоге к выявлению статистических закономерностей, которые численно выражаются зависимостями между элементами волн и определяющими их факторами.

3.1.1. Элементы волн

Каждая волна характеризуется определенными элементами,

Общими элементами для волн являются (рис. 25):

Вершина - наивысшая точка гребня волны;

Подошва - наинизшая точка ложбины волны;

Высота (h) - превышение вершины волны;

Длина (Л)-горизонтальное расстояние между вершинами двух смежных гребней на волновом профиле, проведенном в генеральном направлении распространения волн;

Период (т) - интервал времени между прохождением двух смежных вершин волн через фиксированную вертикаль; другими словами, это промежуток времени, в течение которого волна проходит расстояние, равное своей длине;

Крутизна (е) - отношение высоты данной волны к ее длине. Крутизна волны в различных точках волнового профиля различна. Средняя крутизна волны определяется отношением:

Рис. 25. Основные элементы волн.


Для практики важное значение имеет наибольший уклон, который приближенно равен отношению высоты волны h к ее полудлине λ/2


- скорость волны с - скорость перемещения гребня волны в направлении ее распространения, определяемая за короткий интервал времени порядка периода волны;

Фронт волны - линия на плане взволнованной поверхности, проходящая по вершинам гребня данной волны, которые определяются по множеству волновых профилей, проведенных параллельно генеральному направлению распространения волн.

Для мореплавания наибольшее значение имеют такие элементы волн, как высота, период, длина, крутизна и генеральное направление перемещения волн. Все они зависят от параметров ветрового потока (скорости и направления ветра), его протяженности (разгона) над морем и продолжительности его действия.

В зависимости от условий образования и распространения ветровые волны можно подразделить на четыре типа.

Ветровые - система волн, находящаяся в момент наблюдения под воздействием ветра, которым она вызвана. Направления распространения ветровых волн и ветра на глубокой воде обычно совпадают или же различаются не более чем на четыре румба (45°).

Ветровые волны характерны тем, что подветренный склон их круче, чем наветренный, поэтому верхушки гребней обычно заваливаются, образуя пену, или даже срываются сильным ветром. При выходе волн на мелководье и подходе их к берегу направления распространения волн и ветра могут различаться более чем на 45°.

Зыбь - вызванные ветром волны, распространяющиеся в области волнообразования после ослабления ветра и/или изменения его направления, или вызванные ветром волны, пришедшие из области волнообразования в другую область, где дует ветер с другой скоростью и/или другим направлением. Частный случай зыби, распространяющейся при отсутствии ветра носит название мертвой зыби.

Смешанные - волнение, образующееся в результате взаимодействия ветровых волн и зыби.

Трансформация ветровых волн - изменение структуры ветровых волн при изменении глубины. В этом случае форма волн искажается, они становятся круче и короче и при небольшой глубине, не превышающей высоты волны, гребни последних опрокидываются, и волны разрушаются.

По своему внешнему виду ветровые волны характеризуются разными формами.

Рябь - начальная форма развития ветрового волнения, возникающая под действием слабого ветра; гребни волн при ряби напоминают чешую.

Трехмерное волнение - совокупность волн, средняя длина гребня которых в несколько раз превышает среднюю длину волны.

Регулярное волнение - волнение, в котором форма и элементы всех волн одинаковы.

Толчея - беспорядочное волнение, возникающее вследствие взаимодействия волн, бегущих в разных направлениях.

Волны, разбивающиеся над банками, рифами или камнями, носят название бурунов. Волны, обрушивающиеся в прибрежной зоне, называются прибоем. У крутых берегов и у портовых сооружений прибой имеет форму взброса.

Волны на поверхности моря подразделяются на свободные, когда сила, вызвавшая их, прекращает действовать и волны свободно перемещаются, и вынужденные, когда действие силы, вызвавшей образование волн, не прекращается.

По изменчивости элементов волн во времени их разделяют на установившиеся, т. е, ветровое волнение, в котором статистические характеристики волн не изменяются во времени, и развивающиеся или затухающие - изменяющие свои элементы во времени.

По форме волны делятся на двухмерные - совокупность волн, средняя длина гребня которых во много раз больше средней длины волн, трехмерные - совокупность волн, средняя длина гребня которых в несколько раз превышает длину волн, и уединенные, имеющие только куполообразный гребень без подошвы.

В зависимости от отношения длины волны к глубине моря волны подразделяются на короткие, длина которых значительно меньше глубины моря, и длинные, длина которых больше глубины моря.

По характеру перемещения формы волны они бывают поступательные, у которых наблюдается видимое перемещение формы волны, и стоячие - не имеющие перемещения. По тому, как располагаются волны, их делят на поверхностные и внутренние. Внутренние волны образуются на той или иной глубине на поверхности раздела между слоями воды разной плотности.

3.1.2. Методы расчета элементов волн

При изучении морского волнения используются некоторые теоретические положения, объясняющие те или иные стороны этого явления. Общие законы строения волн и характера движения их отдельных частиц рассматриваются трохоидальной теорией волн. Согласно этой теории, отдельные частицы воды в поверхностных волнах движутся по замкнутым эллипсоидным орбитам, совершая полный оборот за время, равное периоду волны т.

Вращательное движение последовательно расположенных частиц воды, сдвинутых на фазовый угол в начальный момент движения, создает видимость поступательного движения: отдельные частицы движутся по замкнутым орбитам, в то время как профиль волны перемещается поступательно в направлении ветра. Трохоидальная теория волн позволила математически обосновать строение отдельных волн и связать между собой их элементы. Были получены формулы, позволяющие рассчитать отдельные элементы волн


где g -ускорение свободного падения, Длина волны К скорость ее распространения С и период t связаны между собой зависимостью К=Сх.

Следует отметить, что трохоидальная теория волн справедлива только для правильных двухмерных волн, которые наблюдаются в случае свободных ветровых волн - зыби. При трехмерном ветровом волнении орбитальные пути частиц не являются замкнутыми круговыми орбитами, так как под воздействием ветра возникает горизонтальный перенос вод на поверхности моря в направлении распространения волны.

Трохоидальная теория морских волн не вскрывает процесса их развития и затухания, а также механизма передачи энергии от ветра к волне. Между тем, решение именно этих вопросов необходимо с целью получения надежных зависимостей для расчета элементов ветровых волн.

Поэтому развитие теории морских волн пошло по пути разработки теоретических и эмпирических связей между ветром и волнением с учетом разнообразия реальных морских ветровых волн и нестационарности явления, т. е. с учетом их развития и затухания.

В общем виде формулы для расчета элементов ветровых волн могут быть выражены в виде функции от нескольких переменных

H, t, Л,C=f(W , D t, H),

Где W - скорость ветра; D - разгон , t - продолжительность действия ветра; Н - глубина моря.

Для мелководных районов морей для расчета высоты и длины волн можно использовать зависимости


Коэффициенты а и z переменны и зависят от глубины моря

А = 0,0151H 0,342 ; z = 0,104H 0,573 .

Для открытых районов морей элементы волн, обеспеченность высот которых составляет 5%, и средние значения длины волн рассчитываются по зависимостям:

H = 0,45 W 0,56 D 0,54 A,

Л = 0,3lW 0,66 D 0,64 A.

Коэффициент А вычисляется по формуле


Для открытых районов океана элементы волн рассчитываются по следующим формулам:


где е - крутизна волны при малых разгонах, D ПР - предельный разгон, км. Максимальную высоту штормовых волн можно рассчитать по формуле


где hmax - максимальная высота волн, м, D - длина разгона, мили.

В Государственном океанографическом институте на основании спектральной статистической теории волнения были получены графические связи между элементами волн и скоростью ветра, продолжительностью его действия и длиной разгона. Эти зависимости следует считать наиболее надежными, дающими приемлемые результаты, на основе которых в Гидрометцентре СССР (В. С. Красюк) были построены номограммы для расчета высоты волн. Номограмма (рис. 26) разделена на четыре квадранта (I-IV) и состоит из серии графиков, расположенных в определенной последовательности.

В квадранте I (отсчет ведется из нижнего правого угла) номограммы дана градусная сетка, каждое деление которой (по горизонтали) соответствует 1° меридиана на данной широте (от 70 до 20° с. ш.) для карт масштаба 1:15 000000 полярной стереографической проекции. Градусная сетка необходима для перевода расстояния между изобарами п и радиуса кривизны изобар R, измеренных на картах другого масштаба, в масштаб 1:15 000000. В этом случае мы определяем расстояние между изобарами п и радиус кривизны изобар R в градусах меридиана на данной широте. Радиус кривизны изобар R - радиус Окружности, с которой участок изобары, проходящей через точку, для которой ведется расчет, или вблизи нее имеет наибольшее соприкосновение. Определяется он с помощью измерителя путем подбора таким образом, чтобы дуга, проведенная из найденного центра, совпадала с данным участком изобары. Затем на градусной сетке откладываем измеренные величины на данной широте, выраженные в градусах меридиана, и раствором циркуля определяем радиус кривизны изобар и расстояние между изобарами, соответствующее масштабу 1:15000 000.


В квадранте II номограммы приведены кривые, выражающие зависимость скорости ветра от барического градиента и географической широты места (каждая кривая соответствует определенной широте- от 70 до 20° с. ш.). Для перехода от рассчитанного градиентного ветра к ветру, дующему вблизи поверхности моря (на высоте 10 м), была выведена поправка, учитывающая стратификацию приводного слоя атмосферы. При расчетах для холодной части года (устойчивая стратификация t w 2°С)-коэффициент 0,6.


Рис. 26. Номограмма для расчета элементов волн и скорости ветра по картам приземного поля давления, где изобары проведены с интервалом 5 мбар (а) и 8 мбар (б). 1 - зима, 2 - лето.


В квадранте III производится учет влияния кривизны изобар на скорость геострофического ветра. Кривые, соответствующие различным значениям радиуса кривизны (1, 2, 5 и т. д.), даны сплошными (зима) и штриховыми (лето) линиями. Знак оо означает, что изобары прямолинейны. Обычно при радиусе кривизны, превышающей 15°, учета кривизны при расчетах не требуется. По оси абсцисс, разделяющей кйадранты III и IV, определяется скорость ветра W для данной точки.

В квадранте IV расположены кривые, позволяющие по скорости ветра, разгону или продолжительности действия ветра определять высоту так называемых значительных волн (h 3H), имеющих обеспеченность 12,5%.

Если имеется возможность при определении высоты волн использовать не только данные о скорости ветра, но и о разгоне и продолжительности действия ветра, расчет выполняется по разгону и продолжительности действия ветра (в часах). Для этого из квадранта III номограммы опускаем перпендикуляр не до кривой разгона, а до кривой продолжительности действия ветра (6 или 12 ч). Из полученных результатов (по разгону и продолжительности) берется меньшее значение высоты волны.

Расчет с помощью предлагаемой номограммы можно производить лишь для районов «глубокого моря», т. е. для районов, где глубина моря не меньше половины длины волны. При разгоне, превышающем 500 км, или продолжительности действия ветра больше 12 ч используется зависимость высот волн от ветра, соответствующая океанским условиям (утолщенная кривая в квадранте IV).

Таким образом, для определения высоты волн в данной точке необходимо выполнить следующие операции:

А) найти радиус кривизны изобары R, проходящий через данную точку или вблизи нее (с помощью циркуля путем подбора). Радиус кривизны изобар определяется только в случае циклонической кривизны (в циклонах и ложбинах) и выражается в градусах меридиана;

Б) определить разность давления п путем измерения расстояния между соседними изобарами в районе выбранной точки;

В) по найденным значениям R и п в зависимости от времени года находим скорость ветра W;

Г) зная скорость ветра W и разгон D или продолжительность действия ветра (6 или 12 ч), находим высоту значительных волн (h 3H).

Разгон находится следующим образом. От каждой точки, для которой ведется расчет высоты волн, в направлении против ветра проводится линия тока до тех пор, пока ее направление не изменится по отношению к начальному на угол 45° или не достигнет берега, или кромки льда. Приблизительно это и будет разгон или путь ветра, на протяжении которого должны формироваться (волны, приходящие в данную точку.

Продолжительность действия ветра определяется как время, в течение которого направление ветра неизменно или отклоняется от первоначального не более чем на ±22,5°.

По номограмме на рис. 26 а можно определить высоту волны по карте приземного поля давления, на которой изобары проведены через 5 мбар. Если изобары проведены через 8 мбар, то следует использовать номограмму, приведенную на рис. 26 б.

Период и длину волны можно рассчитать по данным о скорости ветра и высоте волны. Приближенный расчет периода волн может быть произведен по графику (рис. 27), на котором представлена зависимость между периодами и высотой ветровых волн при различных скоростях ветра (W). Длина волн определяется по ее периоду и глубине моря в данной точке по графику (рис. 28).