Маркировка насосов шгн. Штанговые глубинные насосы (ШГН). Насосы вставные. Конструкции, области применения, коэффициент подачи насоса. Влияние газа, неполное заполнение плунжера

Тема 7. Штанговые скважинные насосные установки (ШСНУ)

Схема штанговой скважинной насосной установки.

2. Станки-качалки.

Устьевое оборудование.

Штанги насосные (ШН).

Штанговые скважинные насосы ШСН.

Условные обозначения скважинных штанговых насосов.

7. Конструкция скважинных насосов.

8. Замковая опора.

Производительность насоса.

Правила безопасности при эксплуатации скважин штанговыми насосами.

Схема штанговой скважинной насосной установки

Прекращение или отсутствие фонтанирования обусловило использование других способов подъема нефти на поверхность, например, посредством штанговых скважинных насосов. Этими насосами в настоящее время оборудовано большинство скважин. Дебит скважин - от десятков килограмм в сутки до нескольких тонн. Насосы опускают на глубину от нескольких десятков метров до 3000 м иногда до 3200 - 3400 м.

ШСНУ включает:

а) наземное оборудование - станок-качалка (СК), оборудование устья, блок управления;

б) подземное оборудование - насосно-компрессорные трубы (НКТ), штанги насосные (ШН), штанговый скважинный насос (ШСН) и различные защитные устройства, улучшающие работу установки в осложненных условиях.

Штанговая глубинная насосная установка (рисунок 7.1) состоит из скважинного насоса 2 вставного или невставного типов, насосных штанг 4 , насосно-компрессорных труб 3 , подвешенных на планшайбе или в трубной подвеске 8 устьевой арматуры, сальникового уплотнения 6 , сальникового штока 7 , станка качалки 9 , фундамента 10 и тройника 5 . На приеме скважинного насоса устанавливается защитное приспособление в виде газового или песочного фильтра 1 .

Рис. 7.1. Схема штанговой насосной установки

1 – хвостовик; 2 – скважинный насос; 3 – насосно-компрессорные трубы; 4 – насосные штанги; 5 – устьевая арматура; 6 – устьевой сальник; 7 - полированный шток; 8 – канатная подвеска; 9 – стойка; 10 – фундамент.

2. Станки-качалки

Станок-качалка (рисунок 7.2), является индивидуальным приводом скважинного насоса.

Рисунок 7.2 - Станок-качалка типа СКД

1 - подвеска устьевого штока; 2 - балансир с опорой; 3 - стойка; 4 - шатун; 5 - кривошип; 6 - редуктор; 7 - ведомый шкив; 8 - ремень; 9 - электродвигатель; 10 - ведущий шкив; 11 - ограждение; 12 - поворотная плита; 13 - рама; 14 - противовес; 15 - траверса; 16 - тормоз; 17 - канатная подвеска.

Основные узлы станка-качалки - рама, стойка в виде усеченной четырехгранной пирамиды, балансир с поворотной головкой, траверса с шатунами, шарнирно-подвешенная к балансиру, редуктор с кривошипами и противовесами. СК комплектуется набором сменных шкивов для изменения числа качаний, т. е. регулирование дискретное.


Для быстрой смены и натяжения ремней электродвигатель устанавливается на поворотной салазке.

Монтируется станок-качалка на раме, устанавливаемой на железобетонное основание (фундамент). Фиксация балансира в необходимом (крайнем верхнем) положении головки осуществляется с помощью тормозного барабана (шкива). Головка балансира откидная или поворотная для беспрепятственного прохода спускоподъемного и глубинного оборудования при подземном ремонте скважины. Поскольку головка балансира совершает движение по дуге, то для сочленения ее с устьевым штоком и штангами имеется гибкая канатная подвеска 17 . Она позволяет регулировать посадку плунжера в цилиндр насоса для предупреждения ударов плунжера о всасывающий клапан или выхода плунжера из цилиндра, а также устанавливать динамограф для исследования работы оборудования.

Амплитуду движения головки балансира (длина хода устьевого штока - 7) регулируют путем изменения места сочленения кривошипа шатуном относительно оси вращения (перестановка пальца кривошипа в другое отверстие). За один двойной ход балансира нагрузка на СК неравномерная. Для уравновешивания работы станка-качалки помещают грузы (противовесы) на балансир, кривошип или на балансир и кривошип. Тогда уравновешивание называют соответственно балансирным, кривошипным (роторным) или комбинированным.

Блок управления обеспечивает управление электродвигателем СК в аварийных ситуациях (обрыв штанг, поломки редуктора, насоса, порыв трубопровода и т. д.), а также самозапуск СК после перерыва в подаче электроэнергии.

Долгое время нашей промышленностью выпускались станки-качалки типоразмеров СК. В настоящее время по ОСТ 26-16-08-87 выпускаются шесть типоразмеров станков-качалок типа СКД, основные характеристики приведены в таблице 4.

Глубинные насосы штангового типа, которые обозначаются аббревиатурой ШГН, представляют собой устройства, при помощи которых можно откачивать жидкие среды из скважин, характеризующихся значительной глубиной. Использование такого насосного оборудования является одним из наиболее популярных способов откачивания нефти: приблизительно 70 % действующих сегодня нефтеносных скважин обслуживают именно штанговые насосы.

Конструктивные особенности и принцип действия

Основными элементами конструкции насоса штангового, который размещается в скважине на особой колонне, состоящей из подъемных труб, являются:

  • цилиндрический корпус, во внутренней части которого устанавливается пустотелый поршень (вытеснитель), называемый плунжером;
  • нагнетательный клапан, устанавливаемый в верхней части вытеснителя;
  • всасывающий клапан шарового типа, который размещается в нижней части неподвижного цилиндрического корпуса;
  • насосные штанги, соединенные с особым механизмом (качалкой) и плунжером и сообщающие последнему возвратно-поступательное движение (сама качалка, приводящая в действие скважинный штанговый насос (СШН), монтируется вне скважины – на поверхности земли).

Принцип работы глубинных штанговых насосов достаточно прост.

  1. При перемещении плунжера вверх в нижней части камеры насоса создается разрежение давления, что способствует всасыванию перекачиваемой жидкой среды через входной клапан.
  2. Когда плунжер начинает движение вниз, всасывающий клапан закрывается под действием давления перекачиваемой жидкой среды, и она через полый канал поршня и нагнетательный клапан начинает поступать в подъемные трубы.
  3. В ходе безостановочной работы штангового глубинного насоса перекачиваемая им жидкая среда начинает заполнять внутренний объем подъемных труб и в итоге направляется на поверхность.

Основные разновидности

По своему конструктивному исполнению штанговые глубинные насосы могут быть:

  • вставными;
  • невставными.

Опускание в скважину вставных штанговых глубинных насосов, как и их извлечение из нее, осуществляется в собранном виде. Для того чтобы выполнить такую операцию, плунжер помещают внутрь цилиндра, и вся конструкция на насосных штангах опускается в шахту.

Вставные ШГН также подразделяются на устройства двух видов:

  • вставные насосы с верхним расположением замка (НВ1);
  • насосы, замок которых располагается в их нижней части (НВ2).

Вставные устройства используют преимущественно для обслуживания скважин большой глубины, характеризующихся также небольшим дебитом откачиваемой из них жидкой среды. Использование таких насосов ШГН, для извлечения которых достаточно осуществить подъем штанг, с которыми соединена вся конструкция насоса, намного упрощает ремонт скважины, если в этом возникает необходимость.

Для того чтобы поместить в скважину штанговый глубинный насос невставного типа, необходимо выполнить более сложные действия. В скважину сначала помещают цилиндр, для чего используют НКТ, а только затем, используя штанги, в уже установленный цилиндр опускают плунжер с клапанами. Извлечение штангового глубинного насоса данного типа также осуществляется в два приема: в первую очередь из цилиндра насоса извлекается плунжер с клапанами, а затем из скважины поднимается цилиндр с НКТ.

Невставные устройства также подразделяются на несколько категорий:

  • насосные установки без ловителя (НН);
  • невставные глубинные насосы с захватным штоком (НН1);
  • невставные насосы с ловителем (НН2).

Среди перечисленных выше видов невставного оборудования наиболее популярными стали устройства, оснащенные ловителем (НН2). Объясняется высокая популярность последних тем, что механизм их опорожнения отличается простотой конструкции и, соответственно, большей надежностью в эксплуатации.

Выбор оборудования той или иной модели осуществляется в зависимости от конкретных условий эксплуатации, а также от характеристик жидкой среды, которую планируется откачивать с его помощью.

Как читать маркировку

Для того чтобы определить, к какой категории относится глубинный штанговый насос, а также узнать, какими характеристиками обладает такое устройство, достаточно расшифровать его маркировку. Такая маркировка, расшифровка которой не представляет больших сложностей, выглядит следующим образом:

XХХ Х – ХX – ХХ – ХX – Х

Буквы и цифры, присутствующие в такой маркировке, последовательно обозначают следующие параметры:

  • тип штангового насоса, который, как уже говорилось выше, может относиться к одной из следующих категорий: HB1, НВ2, НН, HH1, НН2;
  • тип конструктивного исполнения цилиндра и конструктивные особенности устройства в целом;
  • условный диаметр плунжера, измеряемый в мм (современные модели штанговых глубинных насосов по данному параметру могут относиться к устройствам следующих категорий: 29, 32, 38, 44, 57, 70, 95 и 102 мм);
  • максимальный ход, который может совершать плунжер (для того чтобы узнать, на какое расстояние в мм перемещается плунжер, значение в маркировке необходимо разделить на сто);
  • напор в м вод. ст., который способен обеспечить представленный глубинный насос (это значение в маркировке также необходимо разделить на сто);
  • группа посадки (по степени увеличения расстояния, имеющегося между плунжером и внутренними стенками цилиндра, рассматриваемые устройства могут соответствовать одной из следующих групп посадки: 0, 1, 2, 3).

Конструктивные элементы

Работоспособность и эффективность использования глубинных насосов штангового типа определяют следующие элементы, присутствующие в их конструкции:

  1. цилиндры, которые могут быть цельными или составными;
  2. плунжеры (обыкновенные или типа пескобрей);
  3. клапанные узлы шарикового типа, запорными элементами которых выступают седло и шарик;
  4. якорные башмаки, используемые для закрепления в штанговых глубинных насосов вставного типа (при установке таких элементов необходимо обеспечить герметизацию всасывающей полости насоса от нагнетательной).

Конечно, обязательным элементом конструкции штангового глубинного насоса является штанга – изготовленный из стали круглый стержень с высаженными концами. Основное назначение штанг, которые могут иметь различный диаметр (12, 16, 18, 22 и 25 мм), заключается в том, чтобы сообщать плунжеру возвратно-поступательное движение.

Поскольку в ходе работы глубинного насоса штанги испытывают серьезные нагрузки, для их производства используют высококачественные стали, а после изготовления подвергают нормализационному отжигу и закалке ТВЧ.

Штанговые насосные устройства в зависимости от конструктивных особенностей плунжера и цилиндра, а также от того, как расположен их якорный башмак, могут относиться к одной из 15 категорий.

Бóльшая часть добывающего фонда скважин нефтедобывающих предприятий оборудуется штанговыми насосными установками. Контроль работы штанговых насосов осуществляется, как известно, посредством динамометрирования. То есть посредством снятия диаграммы изменения нагрузки на устьевой шток при его ходе вверх-вниз.

Навык чтения динамограмм, умение их правильно интерпретировать необходимо как специалистам технологической службы нефтедобывающего предприятия, так и специалистам геологической службы.

Инженерам-технологам динамограммы помогают в принятии решений о необходимости текущего ремонта скважины (ТРС) или, например, о необходимости горячей обработки скважины для удаления отложений парафина без привлечения бригады ТРС.

Специалистам геологической службы навык чтения динамограмм необходим как самый первый этап в анализе причин снижения дебита добывающей скважины. Если динамограмма «рабочая», значит дело не в насосе. Значит можно переходить к поиску «геологических» причин снижения дебита.

Теоретическая динамограмма

Прежде чем перейти к разбору реальных динамограмм необходимо разобраться с теоретической динамограммой.

Как известно, динамограмма – это диаграмма изменения нагрузки на устьевой шток в зависимости от его хода. Теоретическая динамограмма – это такая идеализированная динамограмма, которая не учитывает силы трения, инерционные и динамические эффекты, возникающие в реальных условиях. Из-за таких эффектов прямые линии теоретической динамограммы превращаются в волнообразные, характерные для реальной. Также в теоретической динамограмме предполагается полной заполнение цилиндра штангового насоса, то есть коэффициент подачи насоса равен 1, чего в реальных условиях никогда не бывает (коэффициент подачи насоса обычно меньше единицы).

Теоретическая динамограмма имеет форму параллелограмма (рисунок 1).

Рисунок 1. Динамограмма теоретическая

Рисунок 2. Схема ШГН

Точка А на динамограмме - это крайнее нижнее положение плунжера насоса. Отрезок AB - ход вверх полированного штока. При этом происходит деформация (растяжение) штанг, но плунжер насоса все еще находится в крайнем нижнем положении. Отрезок BC - ход вверх полированного штока и плунжера насоса.

Точка C - крайнее верхнее положение плунжера насоса. Отрезок CD - ход вниз полированного штока. При этом происходит деформация (сжатие) штанг, но плунжер насоса все еще находится в крайнем верхнем положении. Отрезок DA - ход вниз полированного штока и плунжера насоса

В общем-то ничего сложного. Левая часть динамограммы характеризует работу насоса при нахождении плунжера в нижнем положении и соответственно работу всасывающего клапана насоса. Правая часть динамограммы - работу насоса при нахождении плунжера в верхнем положении и соответственно работу выкидного клапана насоса.

Имея на руках динамограмму работы насоса можно рассчитать дебит жидкости скважины. Динамограф, которым и снимают динамограммы, выдает в том числе и информацию о числе качаний (в минуту) станка-качалки и длине хода плунжера. Зная, какой насос спущен в скважину, рассчитать дебит не составляет труда. Формула для расчета теоретического дебита жидкости:

Q т = 1440 · π /4 · · L · N

где
Q т – дебит жидкости (теоретический), м 3 /сут
D – диаметр плунжера, м
L – длина хода, м
N – число качаний, кач./мин.

Длину хода и число качаний, как я уже сказал, нам выдает динамограф вместе с динамограммой. Диаметр плунжера обычно указан в названии насоса. Например, у насоса НГН-2-44 диаметр плунжера 44 мм, у НГН-2-57 соответственно 57 мм.

Для того чтобы получить фактический дебит жидкости скважины, необходимо полученный по формуле результат умножить на коэффициент подачи насоса (η ), который как мы уже знаем всегда меньше единицы.

Примеры реальных динамограмм

Фактические динамограммы имеют огромное количество форм и разновидностей. Все их здесь рассмотреть не получится, приведу только несколько характерных примеров:

Влияние газа, неполное заполнение плунжера

Не работают оба клапана

Обрыв или отворот штанг

Выход плунжера из цилиндра насоса

Отложения парафина

Прежде чем закончить статью рассмотрим еще один вопрос:

Как часто снимают динамограммы?

Политика различных нефтедобывающих компаний в отношении частоты снятия динамограмм может отличаться. Но, как правило, динамограммы снимают 1 раз месяц на обычном, ничем не осложненном фонде скважин.

При необходимости динамограммы снимают чаще (например, раз в неделю) на фонде скважин осложненных частыми отложениями парафина. Также динамограммы снимают при наличии соответствующих показаний (как говорят медицинские работники). Например, при снижении дебита жидкости скважины, при повышении динамического уровня, после изменения параметров работы штангового насоса (длина хода, число качаний) и других.

Если на скважине проводились геолого-технические мероприятия (ГТМ), то после запуска скважины до выхода ее на режим динамограммы снимаются, как правило, ежедневно. То же самое можно сказать и о новых скважинах запущенных из бурения.

Если коротко, то внутри происходят два основных процесса:
отделение газа от жидкости - попадание газа в насос может нарушить его работу. Для этого используются газосепараторы (или газосепаратор-диспергатор, или просто диспергатор, или сдвоенный газосепаратор, или даже сдвоенный газосепаратор-диспергатор). Кроме того, для нормальной работы насоса необходимо отфильтровывать песок и твердые примеси, которые содержатся в жидкости.
подъем жидкости на поверхность - насос состоит из множества крыльчаток или рабочих колес, которые, вращаясь, придают ускорение жидкости.

Как я уже писал, электроцентробежные погружные насосы могут применяться в глубоких и наклонных нефтяных скважинах (и даже в горизонтальных), в сильно обводненных скважинах, в скважинах с йодо-бромистыми водами, с высокой минерализацией пластовых вод, для подъема соляных и кислотных растворов. Кроме того, разработаны и выпускаются электроцентробежные насосы для одновременно-раздельной эксплуатации нескольких горизонтов в одной скважине. Иногда электроцентробежные насосы применяются также для закачки минерализованной пластовой воды в нефтяной пласт с целью поддержания пластового давления.

В сборе УЭЦН выглядит вот так:

После того, как жидкость поднята на поверхность, ее необходимо подготовить для передачи в трубопровод. Поступающая из нефтяных и газовых скважин продукция не представляет собой соответственно чистые нефть и газ. Из скважин вместе с нефтью поступают пластовая вода, попутный (нефтяной) газ, твердые частицы механических примесей (горных пород, затвердевшего цемента).
Пластовая вода – это сильно минерализованная среда с содержанием солей до 300 г/л. Содержание пластовой воды в нефти может достигать 80 %. Минеральная вода вызывает повышенное коррозионное разрушение труб, резервуаров; твердые частицы, поступающие с потоком нефти из скважины, вызывают износ трубопроводов и оборудования. Попутный (нефтяной) газ используется как сырье и топливо. Технически и экономически целесообразно нефть перед подачей в магистральный нефтепровод подвергать специальной подготовке с целью ее обессоливания, обезвоживания, дегазации, удаления твердых частиц.

Вначале нефть попадает на автоматизированные групповые замерные установки (АГЗУ). От каждой скважины по индивидуальному трубопроводу на АГЗУ поступает нефть вместе с газом и пластовой водой. На АГЗУ производят учет точного количества поступающей от каждой скважины нефти, а также первичную сепарацию для частичного отделения пластовой воды, нефтяного газа и механических примесей с направлением отделенного газа по газопроводу на ГПЗ (газоперерабатывающий завод).

Все данные по добыче - суточный дебит, давления и прочее фиксируются операторами в культбудке. Потом эти данные анализируются и учитываются при выборе режима добычи.
Кстати, читатели, кто-нибудь знает почему культбудка так называется?

Далее частично отделенная от воды и примесей нефть отправляется на установку комплексной подготовки нефти (УКПН) для окончательного очищения и поставки в магистральный трубопровод. Однако, в нашем случае, нефть вначале проходит на дожимную насосную станцию (ДНС).

Как правило, ДНС применяются на отдаленных месторождениях. Необходимость применения дожимных насосных станций обусловлена тем, что зачастую на таких месторождениях энергии нефтегазоносного пласта для транспортировки нефтегазовой смеси до УКПН недостаточно.
Дожимные насосные станции выполняют также функции сепарации нефти от газа, очистки газа от капельной жидкости и последующей раздельной транспортировки углеводородов. Нефть при этом перекачивается центробежным насосом, а газ - под давлением сепарации. ДНС различаются по типам в зависимости от способности пропускать сквозь себя различные жидкости. Дожимная насосная станция полного цикла состоит при этом из буферной ёмкости, узла сбора и откачки утечек нефти, собственно насосного блока, а также группы свечей для аварийного сброса газа.

На нефтепромыслах нефть после прохождения групповых замерных установок принимается в буферные ёмкости и после сепарации поступает в буферную ёмкость с целью обеспечить равномерное поступление нефти к перекачивающему насосу.

УКПН представляет собой небольшой завод, где нефть претерпевает окончательную подготовку:

  • Дегазацию (окончательное отделение газа от нефти)
  • Обезвоживание (разрушение водонефтяной эмульсии, образующейся при подъеме продукции из скважины и транспорте ее до УКПН)
  • Обессоливание (удаление солей за счет добавления пресной воды и повторного обезвоживания)
  • Стабилизацию (удаление легких фракций с целью уменьшения потерь нефти при ее дальнейшей транспортировке)

Для более эффективной подготовки нередко применяют химические, термохимические методы, а также электрообезвоживание и обессоливание.
Подготовленная (товарная) нефть направляется в товарный парк, включающий резервуары различной вместимости: от 1000 м³ до 50000 м³. Далее нефть через головную насосную станцию подается в магистральный нефтепровод и отправляется на переработку. Но об этом мы поговорим в следующем посте:)

В предыдущих выпусках:
Как пробурить свою скважину? Основы бурения на нефть и газ за один пост -

Добыча нефти при помощи штанговых насосов – самый распространенный способ искусственного подъема нефти, что объясняется их простотой, эффективностью и надежностью. Как минимум две трети фонда действующих добывающих скважин эксплуатируются установками ШГН.

Перед другими механизированными способами добычи нефти УШГН имеют следующие преимущества:

· обладают высоким коэффициентом полезного действия;

· проведение ремонта возможно непосредственно на промыслах;

· для первичных двигателей могут быть использованы различные приводы;

· установки ШГН могут применяться в осложненных условиях эксплуатации - в пескопроявляющих скважинах, при наличии в добываемой нефти парафина, при высоком газовом факторе, при откачке коррозионной жидкости.

Есть у штанговых насосов и недостатки. К основным недостаткам относятся:

· ограничение по глубине спуска насоса (чем глубже, тем выше вероятность обрыва штанг);

· малая подача насоса;

· ограничение по наклону ствола скважины и интенсивности его искривления (неприменимы в наклонных и горизонтальных скважинах, а также в сильно искривленных вертикальных)

Глубинный штанговый насос в простейшем виде (см. рисунок справа) состоит из плунжера, движущегося вверх-вниз по хорошо подогнанному цилиндру. Плунжер снабжен обратным клапаном, который позволяет жидкости течь вверх, но не вниз. Обратный клапан, называемый также выкидным, в современных насосах обычно представляет собой клапан типа шар-седло. Второй клапан, всасывающий, - это шаровой клапан, расположенный внизу цилиндра также позволяет жидкости течь вверх, но не вниз.

Штанговый насос относится к объемному типу насоса, работа которого обеспечивается возвратно-поступательным перемещением плунжера с помощью наземного привода через связующий орган (колонну штанг). Самая верхняя штанга называется полированным штоком , она проходит через сальник на устье скважины и соединяется с головкой балансира станка-качалки с помощью траверсы и гибкой канатной подвески.



Основные узлы привода УШГН (станка-качалки): рама, стойка в виде усеченной четырехгранной пирамиды, 6алансир с поворотной головой, траверса с шатунами, шарнирно подвешенные к балансиру, редуктор с кривошипами и противовесами, комплектуются набором сменных шкивов для изменения числа качаний. Для быстрой смены и натяжения ремней, электродвигатель устанавливают на поворотной салазке.

Автоматизированные групповые замерные установки (АГЗУ)

АГЗУ - Автоматизированная Групповая Замерная Установка - блок учета для автоматического определения дебитов нефтяных скважин.

Автоматизированные групповые замерные установки применяются в следующих областях: напорные системы сбора продукции нефтяных скважин и автоматизированные системы управления технологическими процессами нефтедобычи.

Установка состоит из двух блоков: технологического и аппаратурного. В технологическом блоке размещены:

· замерный сепаратор (ёмкость сепарационная);

· переключатель скважин многоходовый ПСМ;

· счетчик жидкости;

· регулятор расхода;

· привод гидравлический;

· запорная арматура;

· блок гидропривода;

В аппаратурном блоке размещены:

· блок управления;

· блок индикации;

· блок питания.

Принцип работы. Продукция скважин по трубопроводам, подключенным к установке, поступает в переключатель скважин многоходовой ПСМ. При помощи переключателя ПСМ продукция одной из скважин направляется в сепаратор, а продукция остальных скважин направляется в общий трубопровод. В сепараторе происходит отделение газа от жидкости. Выделившийся газ поступает в общий трубопровод (через датчик расхода газа), а жидкость накапливается в нижней емкости сепаратора. С помощью регулятора расхода и заслонки, соединенной с поплавковым уровнемером, обеспечивается циклическое прохождение накопившейся жидкости через счетчик с постоянными скоростями, что обеспечивает измерение дебита скважин в широком диапазоне. Управление переключением скважин осуществляется блоком управления по установленной программе или оператором.

Экскурсии

27 июня 2015 года мы под руководством Зиганшина С.С. отправились в Альметьевск на учебную буровую . Там проводились соревнования между несколькими буровыми бригадами.



6 июля 2015 года мы пошли в лабораторию ООО "Башнефть-Петротест". Там занимаются анализированием нефти на состав, плотность и другие параметры. Об этом нам подробно рассказала Наталья Викторовна. Также нам рассказали об основных экологических проблемах в нефтегазовой отрасли и об их решениях.

7 июля 2015 года мы поехали на куст № 1262 НГДУ "Туймазынефть", который находится в 25-м микрорайоне (недалеко от сероводородной лечебницы). Там нас встретил оператор 5-го разряда Тронтов А.В. Он же вместе с нашим руководителем Зиганшиным С.С. рассказали об устройстве и принципе работы ШГН, об основных обязанностях оператора.


Тронтов А.В. и Зиганшин С.С. объясняют принцип работы ШГН



9 июля 2015 года мы были в Производственном управлении "Обустройство и обслуживание месторождений" Таргин Механосервис (Октябрьский цех), находящийся по адресу ул. Северная 2. Там нас встретил директор Халиков Азат Венерович. Данное предприятие занимается ремонтом нефтепромысловых устройств (бурильные насосы, такой как мультифазный насос, ШГН, ЭЦН и др.). Предприятие производит ремонт как с выездом на месторождение, так и у себя в цеху.

Экскурсию вел механик, недавно выпустившийся студент, Михаил.





Вел экскурсию буровой мастер Валиуллин Айдар Фаритович. Там нам рассказали о процессе бурения скважины, подачи воды в скважину для очистки ее от бурового шлама.




На этом и закончились наши экскурсии.

Заключение

Во время учебной практики мы побывали на экскурсиях под руководительством Зиганшина С.С. Он рассказывал нам очень много и подробно о работе бурильщиков, о принципах работы буровых насосов, штанговых глубинных насосов, автоматизированных групповых замерных установок, о правилах техники безопасности на буровой. За время практики мы узнали много нового не только о принципах работы тех или иных установок, но и о тяжелом труде нефтяника.

Список использованной литературы и материалов

1) Разработка месторождений природных газов: Учебное пособие для вузов. 2011;

2)Федеральные нормы и правила в области промышленной безопасности «правила безопасности. Правила безопасности в нефтяной и газовой промышленности. ПБ 08-624-03, Госгортехнадзор России, 2015;

3) Инструкция по бурению наклонно-направленных скважин с кустовых площадок на нефтяных месторождениях Западной Сибири. РД 39-0148070-6.027-86;
4) Конторович А.Э., Нестеров И.И., Салманов Ф.К., и др. Геология нефти и газа Западной Сибири. -М.: Недра. – 2010. – 680 с.;
5) Основы технологии бурения скважин, учебное пособие, Дмитриев А.Ю.;

6) Справочник бурильщика, Ю.В.Вадецкий, 2008, Москва, Издательский центр "Академия";

7) Интернет источник, http://gazovikoil.ru/index.php?id=253, дата обращения 4 августа 2015 год;

8) Интернет источник, http://vseonefti.ru/upstream/shtangovyi-nasos.html, дата обращения 4 августа 2015 год.

Вызов на практику (гарантийное письмо).

Директору филиала ФГБОУ ВПО

"УГНТУ" в г. Октябрьском

профессору В.Ш. Мухаметшину

Уважаемый Вячеслав Шарифуллович, нефтяная компания ОАО Сургутнефтегаз гарантирует прохождение производственной практики студента 2 курса Герасимова Льва Сергеевича по специальности "Эксплуатация и обслуживание объектов добычи нефти и газа" сроком с 29 июня по 1 августа. Предприятие гарантирует оплачиваемую практику, а также проживание в общежитии.

Генеральный директор предприятия: (ФИО)

(Подпись)

Резюме
Герасимов Лев Сергеевич

Место жительство (регистрация): РФ, Республика Башкортостан,

район Белебеевский, р.п.Приютово, ул. Свердлова, дом 13, кв. 32